1
|
Díaz V, Villalobos M, Arriaza K, Flores K, Hernández-Saravia LP, Velásquez A. Decoding the Dialog Between Plants and Arbuscular Mycorrhizal Fungi: A Molecular Genetic Perspective. Genes (Basel) 2025; 16:143. [PMID: 40004472 PMCID: PMC11855461 DOI: 10.3390/genes16020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Arbuscular mycorrhizal (AM) symbiosis, a mutually beneficial interaction between plant roots and AM fungi, plays a key role in plant growth, nutrient acquisition, and stress tolerance, which make it a major focus for sustainable agricultural strategies. This intricate association involves extensive transcriptional reprogramming in host plant cells during the formation of arbuscules, which are specialized fungal structures for nutrient exchange. The symbiosis is initiated by molecular signaling pathways triggered by fungal chitooligosaccharides and strigolactones released by plant roots, which act as chemoattractants and signaling molecules to promote fungal spore germination, colonization, and arbuscule development. Calcium spiking, mediated by LysM domain receptor kinases, serves as a critical second messenger in coordinating fungal infection and intracellular accommodation. GRAS transcription factors are key components that regulate the transcriptional networks necessary for arbuscule development and maintenance, while small RNAs (sRNAs) from both plant and fungi, contribute to modifications in gene expression, including potential bidirectional sRNA exchange to modulate symbiosis. Understanding the molecular mechanisms related to AM symbiosis may provide valuable insights for implementation of strategies related to enhancing plant productivity and resilience.
Collapse
Affiliation(s)
- Vanessa Díaz
- Laboratorio de Genómica de Ambientes Extremos, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile; (V.D.); (M.V.)
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile
| | - Maite Villalobos
- Laboratorio de Genómica de Ambientes Extremos, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile; (V.D.); (M.V.)
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile
| | - Karem Arriaza
- Centro de Investigación en Medicina de Altura, Universidad Arturo Prat, Iquique 1100000, Chile; (K.A.); (K.F.)
| | - Karen Flores
- Centro de Investigación en Medicina de Altura, Universidad Arturo Prat, Iquique 1100000, Chile; (K.A.); (K.F.)
| | - Lucas P. Hernández-Saravia
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile
- Laboratorio de Laboratorio de Bionanomateriales, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
| | - Alexis Velásquez
- Laboratorio de Genómica de Ambientes Extremos, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile; (V.D.); (M.V.)
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile
| |
Collapse
|
2
|
Li H, Liang Z, Chao Y, Wei X, Zou Y, Qu H, Wang J, Li M, Huang W, Luo J, Peng X. Exploring the GRAS gene family in Taraxacum kok-saghyz Rodin:characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. Biochem Biophys Res Commun 2024; 733:150693. [PMID: 39326257 DOI: 10.1016/j.bbrc.2024.150693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The GRAS gene is an important specific transcription factor in plants, which has multiple functions such as signal transduction, cell morphogenesis and stress response. Although it is widely distributed in plants and has been characterized in several species, however, information about the GRAS family in Taraxacum kok-saghyz Rodin remains unknown. Here, TkGRAS family members were identified and analyzed for molecular characterization, tissue expression patterns and induced expression patterns. A total of 64 GRAS family members were identified at the genome-wide level, which could be categorized into 14 subfamilies by phylogenetic analysis. Most TkGRASs were intronless and had essentially the same gene structure in the same subfamily. Meanwhile, there were multiple response elements found in the promoters of TkGRASs. Tissue expression patterns and induced expression patterns showed that TkGRASs were expressed in different tissues and induced by abiotic stresses. Notably, the expression level of TkGRAS20 was up-regulated under different stresses, suggesting that this gene plays a pivotal role in the stress response. TkGRAS20 showed transcriptional activity in yeast cells and localized in the nucleus and plasma membrane. In conclusion, our study provided valuable insights into the genetic mechanisms underlying stress tolerance in TKS, and several key genes may be used for genetic breeding to improve stress tolerance.
Collapse
Affiliation(s)
- Hao Li
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Zeyuan Liang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Yunhan Chao
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Xiao Wei
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Yan Zou
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Haibo Qu
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Jiahua Wang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Menglong Li
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Wanchang Huang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Jinxue Luo
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China; Guangdong ZhongXun Agri-science Corporation, Huizhou, Guangdong, China.
| | - Xiaojian Peng
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China.
| |
Collapse
|
3
|
Granados-Alegría MI, Canto-Canché B, Gómez-Tah R, Félix JW, Tzec-Simá M, Ruiz-May E, Islas-Flores I. Proteomic Profiling of Cocos nucifera L. Zygotic Embryos during Maturation of Dwarf and Tall Cultivars: The Dynamics of Carbohydrate and Fatty Acid Metabolism. Int J Mol Sci 2024; 25:8507. [PMID: 39126077 PMCID: PMC11312736 DOI: 10.3390/ijms25158507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Collapse
Affiliation(s)
- María Inés Granados-Alegría
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Jean Wildort Félix
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Miguel Tzec-Simá
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Ignacio Islas-Flores
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| |
Collapse
|
4
|
Oh J, Choi JW, Jang S, Kim SW, Heo JO, Yoon EK, Kim SH, Lim J. Transcriptional control of hydrogen peroxide homeostasis regulates ground tissue patterning in the Arabidopsis root. FRONTIERS IN PLANT SCIENCE 2023; 14:1242211. [PMID: 37670865 PMCID: PMC10475948 DOI: 10.3389/fpls.2023.1242211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The Arabidopsis root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex. In the Arabidopsis root, gibberellic acid (GA) deficiency and hydrogen peroxide (H2O2) precociously induced more frequent ACDs in the endodermis for MC formation. Thus, these findings suggest that GA and H2O2 play roles in regulating the timing and extent of MC formation. However, details of the molecular interaction between GA signaling and H2O2 homeostasis remain elusive. In this study, we identified the PEROXIDASE 34 (PRX34) gene, which encodes a class III peroxidase, as a molecular link to elucidate the interconnected regulatory network involved in H2O2- and GA-mediated MC formation. Under normal conditions, prx34 showed a reduced frequency of MC formation, whereas the occurrence of MC in prx34 was restored to nearly WT levels in the presence of H2O2. Our results suggest that PRX34 plays a role in H2O2-mediated MC production. Furthermore, we provide evidence that SCARECROW-LIKE 3 (SCL3) regulates H2O2 homeostasis by controlling transcription of PRX34 during root ground tissue maturation. Taken together, our findings provide new insights into how H2O2 homeostasis is achieved by SCL3 to ensure correct radial tissue patterning in the Arabidopsis root.
Collapse
Affiliation(s)
- Jiyeong Oh
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Song J, Ga E, Park S, Lee H, Yoon IS, Lee SB, Lee JY, Kim BG. PROTEIN PHOSPHATASE 2C08, a Negative Regulator of Abscisic Acid Signaling, Promotes Internode Elongation in Rice. Int J Mol Sci 2023; 24:10821. [PMID: 37445999 DOI: 10.3390/ijms241310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Clade A protein phosphatase 2Cs (PP2CAs) negatively regulate abscisic acid (ABA) signaling. Here, we investigated the functions of OsPP2CAs and their crosstalk with ABA and gibberellic acid (GA) signaling pathways in rice (Oryza sativa). Among the nine OsPP2CAs, OsPP2C08 had the highest amino acid sequence similarity with OsPP2C51, which positively regulates GA signaling in rice seed germination. However, OsPP2C08 was expressed in different tissues (internodes, sheaths, and flowers) compared to OsPP2C51, which was specifically expressed in seeds, and showed much stronger induction under abiotic stress than OsPP2C51. Transgenic rice lines overexpressing OsPP2C08 (OsPP2C08-OX) had a typical ABA-insensitive phenotype in a post-germination assay, indicating that OsPP2C08, as with other OsPP2CAs, negatively regulates ABA signaling. Furthermore, OsPP2C08-OX lines had longer stems than wild-type (WT) plants due to longer internodes, especially between the second and third nodes. Internode cells were also longer in OsPP2C08-OX lines than in the WT. As GA positively regulates plant growth, these results suggest that OsPP2C08 might positively regulate GA biosynthesis. Indeed, the expression levels of GA biosynthetic genes including gibberellin 20-oxidase (OsGA20ox4) and Ent-kaurenoic acid oxidase (OsKAO) were increased in OsPP2C08-OX lines, and we observed that GIBBERELLIN 2-OXIDASE 4 (OsGA2ox4), encoding an oxidase that catalyzes the 2-beta-hydroxylation of several biologically active GAs, was repressed in the OsPP2C08-OX lines based on a transcriptome deep sequencing and RT-qPCR analysis. Furthermore, we compared the accumulation of SLENDER RICE 1 (SLR1), a DELLA protein involved in GA signaling, in OsPP2C08-OX and WT plants, and observed lower levels of SLR1 in the OsPP2C08-OX lines than in the WT. Taken together, our results reveal that OsPP2C08 negatively regulates ABA signaling and positively regulates GA signaling in rice. Our study provides valuable insight into the molecular mechanisms underlying the crosstalk between GA and ABA signaling in rice.
Collapse
Affiliation(s)
- Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Eunji Ga
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sangkyu Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyo Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jong-Yeol Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
6
|
Yang Y, Agassin RH, Ji K. Transcriptome-Wide Identification of the GRAS Transcription Factor Family in Pinus massoniana and Its Role in Regulating Development and Stress Response. Int J Mol Sci 2023; 24:10690. [PMID: 37445868 DOI: 10.3390/ijms241310690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pinus massoniana is a species used in afforestation and has high economic, ecological, and therapeutic significance. P. massoniana experiences a variety of biotic and abiotic stresses, and thus presents a suitable model for studying how woody plants respond to such stress. Numerous families of transcription factors are involved in the research of stress resistance, with the GRAS family playing a significant role in plant development and stress response. Though GRASs have been well explored in various plant species, much research remains to be undertaken on the GRAS family in P. massoniana. In this study, 21 PmGRASs were identified in the P. massoniana transcriptome. P. massoniana and Arabidopsis thaliana phylogenetic analyses revealed that the PmGRAS family can be separated into nine subfamilies. The results of qRT-PCR and transcriptome analyses under various stress and hormone treatments reveal that PmGRASs, particularly PmGRAS9, PmGRAS10 and PmGRAS17, may be crucial for stress resistance. The majority of PmGRASs were significantly expressed in needles and may function at multiple locales and developmental stages, according to tissue-specific expression analyses. Furthermore, the DELLA subfamily members PmGRAS9 and PmGRAS17 were nuclear localization proteins, while PmGRAS9 demonstrated transcriptional activation activity in yeast. The results of this study will help explore the relevant factors regulating the development of P. massoniana, improve stress resistance and lay the foundation for further identification of the biological functions of PmGRASs.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Romaric Hippolyte Agassin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
SCR Suppressor Mutants: Role in Hypocotyl Gravitropism and Root Growth in Arabidopsis thaliana. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SCARECROW (SCR) transcription factor plays a key role in plant growth and development. However, we know very little about the role of SCR regulated pathways in plant development. Here, we used the homozygous scr1 mutant Arabidopsis thaliana (Wassilewskija ecotype), which had a T-DNA insertion in the SCR coding region and lacks a detectable SCR transcript. This scr1 mutant has a determinate mode of root growth, shoot agravitropism and abnormal internal architecture in all organs examined. To screen for mutants that suppress the scr1 abnormal phenotypes, we exposed homozygous scr1 seeds to ethyl methane sulphonate (EMS) mutagen. Upon growth out of these mutagenized seeds, thirteen suppressor mutant-harboring strains were identified. All thirteen suppressor-harboring strains were homozygous for scr1 and lacked the SCR transcript. Ten scr hypocotyl gravitropic suppressor lines showed improved hypocotyl gravitropic response. These ten suppressors fall into six complementation groups suggesting six different gene loci. Similarly, three independent scr root length suppressor lines rescued only the root growth phenotype and fell into three complementation groups, suggesting the involvement of three different gene loci. These suppressors might identify novel functions of the SCR gene in plant development.
Collapse
|
8
|
Liu J, Shu D, Tan Z, Ma M, Guo N, Gao S, Duan G, Kuai B, Hu Y, Li S, Cui D. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. THE NEW PHYTOLOGIST 2022; 236:929-942. [PMID: 35842794 DOI: 10.1111/nph.18381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factors mediate various aspects of plant growth and development. We previously reported that an Arabidopsis IDD subfamily regulates spatial auxin accumulation, and thus organ morphogenesis and gravitropic responses. However, its functions in stress responses are not well defined. Here, we use a combination of physiological, biochemical, molecular, and genetic approaches to provide evidence that the IDD14 cooperates with basic leucine zipper-type binding factors/ABA-responsive element (ABRE)-binding proteins (ABRE-binding factors (ABFs)/AREBs) in ABA-mediated drought tolerance. idd14-1D, a gain-of-function mutant of IDD14, exhibits decreased leaf water loss and improved drought tolerance, whereas inactivation of IDD14 in idd14-1 results in increased transpiration and reduced drought tolerance. Altered IDD14 expression affects ABA sensitivity and ABA-mediated stomatal closure. IDD14 can physically interact with ABF1-4 and subsequently promote their transcriptional activities. Moreover, ectopic expression and mutation of ABFs could, respectively, suppress and enhance plant sensitivity to drought stress in the idd14-1 mutant. Our results demonstrate that IDD14 forms a functional complex with ABFs and positively regulates drought-stress responses, thus revealing a previously unidentified role of IDD14 in ABA signaling and drought responses.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Defeng Shu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Zilong Tan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Mei Ma
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ning Guo
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shan Gao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shipeng Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
9
|
Tokumitsu Y, Kozu T, Yamatani H, Ito T, Nakano H, Hase A, Sasada H, Takada Y, Kaga A, Ishimoto M, Kusaba M, Nakashima T, Abe J, Yamada T. Functional Divergence of G and Its Homologous Genes for Green Pigmentation in Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2022; 12:796981. [PMID: 35069653 PMCID: PMC8766641 DOI: 10.3389/fpls.2021.796981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The degradation of chlorophyll in mature soybean seeds is closely related to the development of their yellow color. In this study, we examined G, its homologue G-like (GL), and their mutant alleles and investigated the relationship between these genes and chlorophyll accumulation in the seed coats of mature seeds. Transient expression of G and GL proteins fused with green fluorescent protein revealed that both were localized in plastids. Overexpression of G resulted in the accumulation of chlorophyll in the seed coats and cotyledons of mature seeds, indicating that high expression levels of G result in chlorophyll accumulation that exceeds its metabolism in the seeds of yellow soybean. Analysis of near isogenic lines at the G locus demonstrated a significant difference in the chlorophyll content of the seed coats and cotyledons of mature seeds when G and mutant g alleles were expressed in the d1d2 stay-green genetic background, indicating that the G protein might repress the SGR-independent degradation of chlorophyll. We examined the distribution of mutant alleles at the G and GL loci among cultivated and wild soybean germplasm. The g allele was widely distributed in cultivated soybean germplasm, except for green seed coat soybean lines, all of which contained the G allele. The gl alleles were much fewer in number than the g alleles and were mainly distributed in the genetic resources of cultivated soybean from Japan. None of the landraces and breeding lines investigated in this study were observed to contain both the g and gl alleles. Therefore, in conclusion, the mutation of the G locus alone is essential for establishing yellow soybeans, which are major current soybean breeding lines.
Collapse
Affiliation(s)
- Yusuke Tokumitsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takuto Kozu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamatani
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takeshi Ito
- Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Haruna Nakano
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ayaka Hase
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroki Sasada
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshitake Takada
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Taiken Nakashima
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jun Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|