1
|
Bao G, Xu X, Yang J, Liu J, Shi T, Zhao X, Li X, Bian S. Identification and functional characterization of the MYB transcription factor GmMYBLJ in soybean leaf senescence. FRONTIERS IN PLANT SCIENCE 2025; 16:1533592. [PMID: 39926644 PMCID: PMC11802812 DOI: 10.3389/fpls.2025.1533592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Leaf senescence is an important agronomic trait that significantly influences the quality and yield of soybeans. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are considered crucial regulators governing leaf senescence, which can be utilized to improve agronomic traits in crops. However, our knowledge regarding the functional roles of soybean MYBs in leaf senescence is extremely limited. In this study, GmMYBLJ, a CCA1-like MYB, was identified and functionally characterized with respect to leaf senescence. The GmMYBLJ protein is localized in the nucleus, and a high accumulation of its transcripts was observed in nodules and embryos. Notably, GmMYBLJ was highly expressed in soybean senescent leaves and was transcriptionally induced by dark or NaCl treatment, as confirmed by histochemical GUS staining analysis. Ectopic overexpression of GmMYBLJ in Arabidopsis not only led to earlier leaf senescence, reduced chlorophyll content, and increased MDA accumulation but also promoted the expression of several WRKY family transcription factors and senescence-associated genes, such as SAG12 and ORE1. Further investigation showed that overexpression of GmMYBLJ accelerated Arabidopsis leaf senescence under darkness and in response to Pst DC3000 infection. Moreover, transgenic soybean plants overexpressing GmMYBLJ grew faster and exhibited accelerated senescence under salt stress. DAB staining analysis showed that GmMYBLJ induced ROS accumulation in soybean hairy roots and Arabidopsis leaves. Collectively, our results provided useful information into the functional roles of GmMYBLJ in both age-dependent and stress-induced senescence.
Collapse
Affiliation(s)
- Guohua Bao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiao Xu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Jing Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, Jilin, China
| | - Juanjuan Liu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Zhao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Elsharawy H, Refat M. SAL1 gene: a promising target for improving abiotic stress tolerance in plants a mini review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:1-9. [PMID: 39901960 PMCID: PMC11787127 DOI: 10.1007/s12298-025-01549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
Global climate change poses a significant risk to agricultural productivity due to its diverse impacts on agricultural ecosystems, such as increased temperatures and altered precipitation patterns, all of which can adversely affect crop productivity. To overcome these challenges, plants have evolved intricate mechanisms to regulate stress responses and enhance stress tolerance. The SAL1 gene, which encodes a phosphatase enzyme, has emerged as a key player in plant stress responses. In this review, we provide an overview of the SAL1 gene, its functional significance, and its potential applications for improving stress tolerance in crops. To address the escalating global food demand amidst climate change challenges, it is imperative to pursue innovative strategies aimed at enhancing crop tolerance against abiotic stress.
Collapse
Affiliation(s)
- Hany Elsharawy
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
3
|
Jiang W, Deng F, Babla M, Chen C, Yang D, Tong T, Qin Y, Chen G, Marchant B, Soltis P, Soltis DE, Zeng F, Chen ZH. Efficient gene editing of a model fern species through gametophyte-based transformation. PLANT PHYSIOLOGY 2024; 196:2346-2361. [PMID: 39268871 PMCID: PMC11638000 DOI: 10.1093/plphys/kiae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system allows precise and easy editing of genes in many plant species. However, this system has not yet been applied to any fern species through gametophytes due to the complex characteristics of fern genomes, genetics, and physiology. Here, we established a protocol for gametophyte-based screening of single-guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas9-mediated gene knockout in a model fern species, Ceratopteris richardii. We utilized the C. richardii ACTIN promoter to drive sgRNA expression and the enhanced CaMV 35S promoter to drive the expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, which was employed to successfully edit a few genes, such as Nucleotidase/phosphatase 1 (CrSAL1) and Phytoene Desaturase (CrPDS), which resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 resulted in significantly (P < 0.05) reduced stomatal conductance (gs), leaf transpiration rate (E), guard cell length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed significantly increased net photosynthetic rate (A), gs, and E as well as most of the stomatal traits and ABA-induced ROS production in guard cells compared to the wild-type (WT) plants. Taken together, our optimized CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern species, allowing the exploration of fern gene functions for evolutionary biology, herbal medicine discovery, and agricultural applications.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Xianghu Laboratory, Hangzhou 311231, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chen Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dongmei Yang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Blaine Marchant
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO 63121, USA
| | - Pamela Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
4
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Shen Q, Zhang S, Ge C, Liu S, Chen J, Liu R, Ma H, Song M, Pang C. Genome-wide association study identifies GhSAL1 affects cold tolerance at the seedling emergence stage in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:27. [PMID: 36810826 DOI: 10.1007/s00122-023-04317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.
Collapse
Affiliation(s)
- Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Mohr T, Horstman J, Gu YQ, Elarabi NI, Abdallah NA, Thilmony R. CRISPR-Cas9 Gene Editing of the Sal1 Gene Family in Wheat. PLANTS 2022; 11:plants11172259. [PMID: 36079639 PMCID: PMC9460255 DOI: 10.3390/plants11172259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The highly conserved Sal1 encodes a bifunctional enzyme with inositol polyphosphate-1-phosphatase and 3′ (2′), 5′-bisphosphate nucleotidase activity and has been shown to alter abiotic stress tolerance in plants when disrupted. Precise gene editing techniques were used to generate Sal1 mutants in hexaploid bread wheat. The CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) Cas9 system with three guide RNAs (gRNAs) was used to inactivate six Sal1 homologous genes within the Bobwhite wheat genome. The resulting mutant wheat plants with all their Sal1 genes disabled had slimmer stems, had a modest reduction in biomass and senesced more slowly in water limiting conditions, but did not exhibit improved yield under drought conditions. Our results show that multiplexed gRNAs enabled effective targeted gene editing of the Sal1 gene family in hexaploid wheat. These Sal1 mutant wheat plants will be a resource for further research studying the function of this gene family in wheat.
Collapse
Affiliation(s)
- Toni Mohr
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - James Horstman
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - Yong Q. Gu
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - Nagwa I. Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Naglaa A. Abdallah
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roger Thilmony
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
- Correspondence: ; Tel.: +1-(510)-559-5761
| |
Collapse
|