1
|
Selvan TS, Seem K, Pandey R, Pandey R, Vinod KK, Kumar S, Mohapatra T. Physiological and molecular investigations on a high-yielding variety and near-isogenic line of rice under continuous phosphorus stress reveal major regulatory function of Pup1 QTL. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109577. [PMID: 39923421 DOI: 10.1016/j.plaphy.2025.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Phosphorous (P) plays crucial roles in cellular functioning including respiration, photosynthesis, and membranes. P deficiency in the soil causes stunted growth, smaller/erect leaves, lesser tillers, and a considerable decrease in yield. To decipher the functions of Pup1 QTL and delineate the potential effects of continuous P stress on plant growth, yield/quality, physio-biochemical and molecular analyses of rice [Pusa-44 (P deficiency sensitive) and a near-isogenic line-23 (NIL-23), (harbouring Pup1 QTL, tolerant genotype)] were hydroponically grown under P continuous stress [deficiency (4 ppm) or extravagance (≥32 ppm)] till maturity. Decrease in the number of tillers and panicles under stress led to poor agronomic performance of rice. P concentration in roots, leaves, and seeds raised significantly with increasing concentration of P in hydroponic culture. Higher P concentration in the medium led to elevated phytate concentration in seeds; however, it was comparatively more in seeds of the tolerant (NIL-23) genotype. Comparative transcriptome analysis indicated differential expression of genes for P transporters and those implicated in P mobilization/homeostasis, carbohydrate/lipid metabolism, etc. on P deficiency. Moreover, the regulatory function of Pup1 in reprograming the gene expression involved in chromatin assembly, histone/DNA methylation, cell wall organization, etc. was detected in the panicle of tolerant genotype on P deficiency. This study confirms a major regulatory function of Pup1 and outlines the potential effects of excessive P on plant development, productivity, and quality of seeds. These findings would be useful in improving P uptake/use efficiency in rice and prudent/sustainable usage of phosphatic fertilizers.
Collapse
Affiliation(s)
- Tamil S Selvan
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India
| | - Renu Pandey
- Plant Physiology Division, Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Pandey
- Plant Physiology Division, Indian Agricultural Research Institute, New Delhi, India
| | - K K Vinod
- Genetics Division, Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India.
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India.
| |
Collapse
|
2
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
3
|
Mishra G, Mohapatra SK, Rout GR. Plant membrane transporters function under abiotic stresses: a review. PLANTA 2024; 260:125. [PMID: 39448443 DOI: 10.1007/s00425-024-04548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
MAIN CONCLUSION In the present review, we discussed the detailed signaling cascades via membrane transporters that confer plant tolerance to abiotic stresses and possible significant use in plant development for climate-resilient crops. Plant transporters play significant roles in nutrient uptake, cellular balance, and stress responses. They facilitate the exchange of chemicals and signals across the plant's membrane by signal transduction, osmotic adjustment, and ion homeostasis. Therefore, research into plant transporters is crucial for understanding the mechanics of plant stress tolerance. Transporters have potential applications in crop breeding for increased stress resistance. We discuss new results about various transporter families (ABC, MATE, NRAMP, NRT, PHT, ZIP), including their functions in abiotic stress tolerance and plant development. Furthermore, we emphasize the importance of transporters in plant responses to abiotic stresses such as drought, cold, salt, and heavy metal toxicity, low light, flooding, and nutrient deficiencies. We discuss the transporter pathways and processes involved in diverse plant stress responses. This review discusses recent advances in the role of membrane transporters in abiotic stress tolerance in Arabidopsis and other crops. The review contains the genes discovered in recent years and associated molecular mechanisms that improve plants' ability to survive abiotic stress and their possible future applications by integrating membrane transporters with other technologies.
Collapse
Affiliation(s)
- Gayatri Mishra
- The Department of Biological Sciences, The University of Utah, 257 1400 E, Salt Lake City, UT, 84112, USA.
| | - Subrat Kumar Mohapatra
- The Department of Agricultural Statistics, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Gyana Ranjan Rout
- The Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
4
|
Sharma S, Raviteja DH, Kumar T, Bindraban PS, Pandey R. Nutrient remobilization and C:N:P stoichiometry in response to elevated CO 2 and low phosphorus availability in rice cultivars introgressed with and without Pup1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108657. [PMID: 38670030 DOI: 10.1016/j.plaphy.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The continuously rising atmospheric CO2 concentration potentially increase plant growth through stimulating C metabolism; however, plant C:N:P stoichiometry in response to elevated CO2 (eCO2) under low P stress remains largely unknown. We investigated the combined effect of eCO2 and low phosphorus on growth, yield, C:N:P stoichiometry, and remobilization in rice cv. Kasalath (aus type), IR64 (a mega rice variety), and IR64-Pup1 (Pup1 QTL introgressed IR64). In response to eCO2 and low P, the C accumulation increased significantly (particularly at anthesis stage) while N and P concentration decreased leading to higher C:N and C:P ratios in all plant components (leaf, sheath, stem, and grain) than ambient CO2. The remobilization efficiencies of N and P were also reduced under low P with eCO2 as compared to control conditions. Among cultivars, the combined effect of eCO2 and low P was greater in IR64-Pup1 and produced higher biomass and grain yield as compared to IR64. However, IR64-Pup1 exhibited a lower N but higher P concentration than IR64, indicating that the Pup1 QTL improved P uptake but did not influence N uptake. Our study suggests that the P availability along with eCO2 would alter the C:N:P ratios due to their differential partitioning, thereby affecting growth and yield.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - D H Raviteja
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India; Department of Crop Physiology, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - Tarun Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prem S Bindraban
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL, 35662, USA
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. PLANTA 2023; 259:4. [PMID: 37993704 DOI: 10.1007/s00425-023-04272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
6
|
de Faria Melo CC, Amaral DS, de Moura Zanine A, de Jesus Ferreira D, de Mello Prado R, de Cássia Piccolo M. Nanosilica enhances morphogenic and chemical parameters of Megathyrsus maximus grass under conditions of phosphorus deficiency and excess stress in different soils. BMC PLANT BIOLOGY 2023; 23:497. [PMID: 37845606 PMCID: PMC10580593 DOI: 10.1186/s12870-023-04521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
7
|
Prathap V, Kumar S, Tyagi A. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice. Int J Biol Macromol 2023; 234:123760. [PMID: 36812961 DOI: 10.1016/j.ijbiomac.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Phosphorus (P)-deficiency is one of the major nutrient constraints for global rice production. P-deficiency tolerance in rice involves complex regulatory mechanisms. To gain insights into the proteins involved in phosphorus acquisition and use efficiency in rice, proteome analysis of a high-yielding rice cultivar Pusa-44 and its near-isogenic line (NIL)-23 harboring a major phosphorous uptake (Pup1) QTL, grown under control and P-starvation stress, was performed. Comparative proteome profiling of shoot and root tissues from the plants grown hydroponically with P (16 ppm, +P) or without P (0 ppm, -P) resulted in the identification of 681 and 567 differentially expressed proteins (DEPs) in shoot of Pusa-44 and NIL-23, respectively. Similarly, 66 and 93 DEPs were identified in root of Pusa-44 and NIL-23, respectively. These P-starvation responsive DEPs were annotated to be involved in metabolic processes like photosynthesis, starch-, sucrose-, energy-metabolism, transcription factors (mainly ARF, ZFP, HD-ZIP, MYB), and phytohormone signaling. Comparative analysis of the expression patterns observed by proteome analysis with that reported at the transcriptome level indicated the Pup1 QTL-mediated post-transcriptional regulation plays an important role under -P stress. Thus, the present study describes the molecular aspect of the regulatory functions of Pup1 QTL under P-starvation stress in rice, which might help develop an efficient rice cultivar with enhanced P acquisition and assimilation for better performance in P-deficient soil.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
8
|
Honda S, Yamazaki Y, Mukada T, Cheng W, Chuba M, Okazaki Y, Saito K, Oikawa A, Maruyama H, Wasaki J, Wagatsuma T, Tawaraya K. Lipidome Profiling of Phosphorus Deficiency-Tolerant Rice Cultivars Reveals Remodeling of Membrane Lipids as a Mechanism of Low P Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:1365. [PMID: 36987053 PMCID: PMC10057753 DOI: 10.3390/plants12061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.
Collapse
Affiliation(s)
- Soichiro Honda
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yumiko Yamazaki
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Takumi Mukada
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Masaru Chuba
- Yamagata Integrated Agricultural Research Center, Tsuruoka 997-7601, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hayato Maruyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun Wasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tadao Wagatsuma
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| |
Collapse
|
9
|
Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. Pup1 QTL Regulates Gene Expression Through Epigenetic Modification of DNA Under Phosphate Starvation Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:871890. [PMID: 35712593 PMCID: PMC9195100 DOI: 10.3389/fpls.2022.871890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar ; ; orcid.org/0000-0002-7127-3079
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|