1
|
Georgieva P, Rusanov K, Rusanova M, Kitanova M, Atanassov I. Construction of Simple Sequence Repeat-Based Genetic Linkage Map and Identification of QTLs for Accumulation of Floral Volatiles in Lavender ( Lavandula angustifolia Mill.). Int J Mol Sci 2025; 26:3705. [PMID: 40332356 PMCID: PMC12028027 DOI: 10.3390/ijms26083705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
In spite of the increasing industrial cultivation of lavender (Lavandula angustifolia Mill.), no genetic linkage map and mapping of QTLs (quantitative trait locus) has been reported for Lavandula species. We present the development of a set of SSR (simple sequence repeat) markers and the first genetic linkage map of lavender following the genotyping of a segregating population obtained by the self-pollination of the industrial lavender variety Hemus. The resulting genetic map comprises 25 linkage groups (LGs) corresponding to the chromosome number of the lavender reference genome. The map includes 375 loci covering a total of 2631.57 centimorgan (cM). The average marker distance in the established map is 7.01 cM. The comparison of the map and reference genome sequence shows that LG maps cover an average of 82.6% of the chromosome sequences. The PCR amplification tests suggest that the developed SSR marker set possesses high intra-species (>93%) and inter-species (>78%) transferability. The QTL analysis employing the constructed map and gas chromatography/mass spectrometry (GC/MS) dataset of flower extracted volatiles resulted in the mapping of a total of 43 QTLs for the accumulation of 25 different floral volatiles. The comparison of the genome location of the QTLs and known biosynthetic genes suggests candidate genes for some QTLs.
Collapse
Affiliation(s)
- Pavlina Georgieva
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Meglena Kitanova
- Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| | - Ivan Atanassov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| |
Collapse
|
2
|
Oseni OM, Sajaditabar R, Mahmoud SS. Metabolic engineering of terpene metabolism in lavender. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:67. [PMID: 38988370 PMCID: PMC11230991 DOI: 10.1186/s43088-024-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants. Main body Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes. Conclusion Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.
Collapse
Affiliation(s)
- Ojo Michael Oseni
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Reza Sajaditabar
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| |
Collapse
|
3
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
4
|
Yang P, Ling XY, Zhou XF, Chen YX, Wang TT, Lin XJ, Zhao YY, Ye YS, Huang LX, Sun YW, Qi YX, Ma DM, Zhan RT, Huang XS, Yang JF. Comparing genomes of Fructus Amomi-producing species reveals genetic basis of volatile terpenoid divergence. PLANT PHYSIOLOGY 2023; 193:1244-1262. [PMID: 37427874 DOI: 10.1093/plphys/kiad400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xu-Yi Ling
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Fan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Xia Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tian-Tian Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Jing Lin
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Shi Ye
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lin-Xuan Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ye-Wen Sun
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Xin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Dong-Ming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruo-Ting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jin-Fen Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. Int J Mol Sci 2023; 24:ijms24108831. [PMID: 37240177 DOI: 10.3390/ijms24108831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Lavandula species are one of the most useful aromatic and medicinal plants and have great economic potential. The phytopharmaceutical contribution of the secondary metabolites of the species is unquestionable. Most recent studies have been focusing on the elucidation of the genetic background of secondary metabolite production in lavender species. Therefore, knowledge of not only genetic but especially epigenetic mechanisms for the regulation of secondary metabolites is necessary for the modification of those biosynthesis processes and the understanding of genotypic differences in the content and compositional variability of these products. The review discusses the genetic diversity of Lavandula species in relation to the geographic area, occurrence, and morphogenetic factors. The role of microRNAs in secondary-metabolites biosynthesis is described.
Collapse
Affiliation(s)
- Miroslav Habán
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Joanna Korczyk-Szabó
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Simona Čerteková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|