1
|
Khoulali C, Pastor JM, Galeano J, Vissenberg K, Miedes E. Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis. Int J Mol Sci 2025; 26:2946. [PMID: 40243585 PMCID: PMC11989001 DOI: 10.3390/ijms26072946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion (Allium cepa L.) epidermis as a model system, leveraging its layered organization to investigate growth stages. Microscopic analysis revealed proportional variations in cell size in different epidermal layers, offering insights into growth dynamics and CW structural adaptations. Fourier transform infrared spectroscopy (FTIR) identified 11 distinct spectral intervals associated with CW components, highlighting structural modifications that influence wall elasticity and rigidity. Biochemical assays across developmental layers demonstrated variations in cellulose, soluble sugars, and antioxidant content, reflecting biochemical shifts during growth. The differential expression of ten cell wall enzyme (CWE) genes, analyzed via RT-qPCR, revealed significant correlations between gene expression patterns and CW composition changes across developmental layers. Notably, the gene expression levels of the pectin methylesterase and fucosidase enzymes were associated with the contents in cellulose, soluble sugar, and antioxidants. To complement these findings, machine learning models, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Neural Networks, were employed to integrate FTIR data, biochemical parameters, and CWE gene expression profiles. Our models achieved high accuracy in predicting growth stages. This underscores the intricate interplay among CW composition, CW enzymatic activity, and growth dynamics, providing a predictive framework with applications in enhancing crop productivity and sustainability.
Collapse
Affiliation(s)
- Celia Khoulali
- Department of Biotechnology—Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Biodiversity and Conservation of Plant Genetic Resources—UPM Research Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Complex System Research Group—UPM, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.P.); (J.G.)
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Javier Galeano
- Complex System Research Group—UPM, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.P.); (J.G.)
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Kris Vissenberg
- Department of Biology, Faculty of Science, University of Antwerp, 2020 Antwerpen, Belgium;
- Department of Agriculture, Hellenic Mediterranean University, 71410 Heraklion, Crete, Greece
| | - Eva Miedes
- Department of Biotechnology—Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Biodiversity and Conservation of Plant Genetic Resources—UPM Research Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Fahad M, Tariq L, Li W, Wu L. MicroRNA gatekeepers: Orchestrating rhizospheric dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:845-876. [PMID: 39981727 PMCID: PMC11951408 DOI: 10.1111/jipb.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Wanchang Li
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Zeng X, Wei X, Zhan J, Lu Y, Lei Y, Shen X, Ge X, Chen Q, Qu Y, Li F, Zhao H. Uncovering miRNA-mRNA regulatory modules of cotton in response to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109614. [PMID: 40015194 DOI: 10.1016/j.plaphy.2025.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Cadmium (Cd2+), a non-essential heavy metal for plant, adversely effects on crop productivity and food safety. Cotton, predominantly cultivated as a non-food crop, offers the advantage of not transferring Cd2+ into the food chain, making it an effective option for remediating Cd2+contaminated soils. While previous researches have extensively examined the gene expression responses of cotton to Cd2+ stress, insights at the post-transcriptional level remain limited. In this study, a comprehensive methodology was employed, incorporating miRNA sequencing, degradomics, and RNA sequencing, to investigate the responses of the Cd2+-tolerant cotton cultivar XM and the Cd2+-sensitive cotton cultivar ZM24 under Cd2+ exposure. The analysis revealed that these the identified miRNA-target gene pairs predominantly influence various biological processes, including light signaling, cell wall biogenesis, abiotic stress responses, transportation, and hormone signaling pathways in response to Cd2+ stress. Overall, our findings suggest that newly identified miRNAs and their corresponding target genes in cotton may contribute to enhance tolerance to Cd2+ stress through multiple mechanisms, facilitating the breeding of superior cotton cultivars with enhanced tolerance to Cd2+ toxicity.
Collapse
Affiliation(s)
- Xiaolin Zeng
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Industrial Crops Institute of Jiangxi, Nanchang, 330203, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yi Lu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuqi Lei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyi Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Fuguang Li
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
4
|
Zhao H, Luo X, Guo C, Zhang Z, Ma K, Niu J, Quan S. Transcriptome and MicroRNA Analysis of Juglans regia in Response to Low-Temperature Stress. Int J Mol Sci 2025; 26:1401. [PMID: 40003869 PMCID: PMC11855649 DOI: 10.3390/ijms26041401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Walnuts are among the globally significant woody food and oil tree species. At high latitudes, they frequently experience late-frost damage, inducing low-temperature stress, which significantly affects walnut seedlings. The aim of this study was to investigate the physiological and biochemical alterations in walnut seedlings under low-temperature (LT) stress along with its underlying molecular mechanisms. Physiological indices were determined, and the transcriptome and miRNA were sequenced by sampling leaves (0 h, 6 h, 12 h, 24 h, and 48 h) of two-month-old live seedlings of walnuts treated with a low temperature of 4 °C. The results indicated that LT stress induced an increase in electrical conductivity and malondialdehyde content while simultaneously causing a reduction in Fv/Fm. From the transcriptome comparison between the control and treated groups, a total of 12,566 differentially expressed genes (DEGs) were identified, consisting of 6829 up-regulated and 5737 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs were primarily enriched in polysaccharide metabolic processes, responses to abscisic acid and phenylpropanoid biosynthesis pathways. Furthermore, the miRNA database identified 1052 miRNAs in response to low-temperature stress in walnuts; these miRNAs were found to target 7043 predicted genes. Through the integration and analysis of transcriptome and miRNA data, 244 differential DEGs were identified. Following GO and KEGG enrichment analyses of the differential target genes, we identified that these genes primarily regulate pathways involved in starch and sucrose metabolism, glyoxylate and dicarboxylate metabolism, and glycerophospholipid biosynthesis, as well as phenylalanine, tyrosine, and tryptophan biosynthesis, in walnut leaves under LT stress. Additionally, we conducted an in-depth analysis of the associations between differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs) within the starch and sucrose metabolism pathway. Real-time fluorescent quantitative PCR (qRT-PCR) validation of the expression patterns of a subset of differential genes confirmed the accuracy of the transcriptome data. This study unveils the potential molecular mechanisms underlying walnut's response to low-temperature stress, providing valuable genetic resources for future research on the cold tolerance mechanisms of walnut in response to late-frost damage.
Collapse
Affiliation(s)
- Haochang Zhao
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Xia Luo
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Caihua Guo
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zhongrong Zhang
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jianxin Niu
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Shaowen Quan
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| |
Collapse
|
5
|
Wang H, Yu J, Zhang X, Zeng Q, Zeng T, Gu L, Zhu B, Yu F, Du X. Genome-Wide Identification and Analysis of Phospholipase C Gene Family Reveals Orthologs, Co-Expression Networks, and Expression Profiling Under Abiotic Stress in Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:2976. [PMID: 39519895 PMCID: PMC11547881 DOI: 10.3390/plants13212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Phospholipase C (PLC) is an essential enzyme involved in lipid signaling pathways crucial for regulating plant growth and responding to environmental stress. In sorghum, 11 PLC genes have been identified, comprising 6 PI-PLCs and 5 NPCs. Through phylogenetic and interspecies collinearity analyses, structural similarities between SbPLCs and ZmPLCs proteins have been observed, with a particularly strong collinearity between SbPLCs and OsPLCs. Promoter function analysis has shown that SbPLCs are significantly enriched under abiotic stress and hormonal stimuli, like ABA, jasmonic acid, drought, high temperature, and salt. Gene co-expression networks, constructed using a weighted gene co-expression network analysis (WGCNA), highlight distinct expression patterns of SbPLC1, SbPLC3a, and SbPLC4 in response to abiotic stress, providing further insights into the expression patterns and interactions of SbPLCs under various environmental stimuli. qRT-PCR results reveal variations in expression levels among most SbPLCs members under different stress conditions (drought, NaCl, NaHCO3), hormone treatments (ABA), and developmental stages, indicating both specific and overlapping expression patterns. This comprehensive analysis offers valuable insights into the roles of SbPLCs in sorghum, shedding light on their specific expression patterns, regulatory elements, and protein interactions across different environmental stimuli and developmental stages.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xingyu Zhang
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China;
| | - Qian Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Feng Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| |
Collapse
|
6
|
Peng Q, Shrestha A, Zhang Y, Fan J, Yu F, Wang G. How lignin biosynthesis responds to nitrogen in plants: a scoping review. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:881-895. [PMID: 39032003 DOI: 10.1111/plb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 07/22/2024]
Abstract
Nitrogen (N) plays a critical role in the functioning of key amino acids and synthetic enzymes responsible for the various stages of lignin biosynthesis. However, the precise mechanisms through which N influences lignin biosynthesis have not been fully elucidated. This scoping review explores how lignin biosynthesis responds to N in plants. A systematic search of the literature in several databases was conducted using relevant keywords. Only 44 of the 1842 selected studies contained a range of plant species, experimental conditions, and research approaches. Lignin content, structure, and biosynthetic pathways in response to N are discussed, and possible response mechanisms of lignin under low N are proposed. Among the selected studies, 64.52% of the studies reter to lignin content found a negative correlation between N availability and lignin content. Usually, high N decreases the lignin content, delays cell lignification, increases p-hydroxyphenyl propane (H) monomer content, and regulates lignin synthesis through the expression of key genes (PAL, 4CL, CCR, CAD, COMT, LAC, and POD) encoding miRNAs and transcription factors (e.g., MYB, bHLH). N deficiency enhances lignin synthesis through the accumulation of phenylpropanoids, phenolics, and soluble carbohydrates, and indirect changes in phytohormones, secondary metabolites, etc. This review provides new insights and important references for future studies on the regulation of lignin biosynthesis.
Collapse
Affiliation(s)
- Q Peng
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - A Shrestha
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Zhang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J Fan
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - F Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - G Wang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Luan HY, Li X, Wu SC, Xiong AS. Hydrogen sulfide alleviates cadmium stress in germinating carrot seeds by promoting the accumulation of proline. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154357. [PMID: 39316927 DOI: 10.1016/j.jplph.2024.154357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Carrot (Daucus carota L.), a widely cultivated economically vegetable from the Apiaceae family, is grown globally. However, carrots can be adversely impacted by cadmium (Cd) pollution in the soil due to its propensity to accumulate in the fleshy root, thus impeding carrot growth and posing health hazards to consumers. Given the potential of hydrogen sulfide (H2S) to improve plant resistance against Cd stress, we treated germinating carrot seeds with varying concentrations of sodium hydrosulfide (NaHS), aiming to alleviate the toxic impacts of Cd stress on carrot seed germination. The results revealed that carrot seeds treated with a concentration of 0.25 mM NaHS displayed better seed germination-associated characteristics compared to seeds treated with NaHS concentrations of 0.1 mM and 0.5 mM. Further investigation revealed a rise in the expression levels of L-cysteine desulfhydrase and D-cysteine desulfhydrase, along with enhanced activity of L-cysteine desulfhydrase and D-cysteine desulfhydrase among the NaHS treatment group, thereby leading to H2S accumulation. Moreover, NaHS treatment triggered the expression of pyrroline-5-carboxylate synthase and pyrroline-5-carboxylate reductase and promoted the accumulation of endogenous proline, while the contents of soluble sugar and soluble protein increased correspondingly. Interestingly, since the application of exogenous proline did not influence the accumulation of endogenous H2S, suggesting that H2S served as the upstream regulator of proline. Histochemical staining and biochemical indices revealed that NaHS treatment led to elevated antioxidant enzyme activity, alongside a suppression of superoxide anion and hydrogen peroxide generation. Furthermore, high performance liquid chromatography analysis revealed that NaHS treatment reduced Cd2+ uptake, thereby promoting germination rate, seed vitality, and hypocotyl length of carrot seeds under Cd stress. Overall, our findings shed light on the application of NaHS to enhance carrot resistance against Cd stress and lay a foundation for exploring the regulatory role of H2S in plants responding to Cd stress.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hai-Ye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Xiang Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Sheng-Cai Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
8
|
Guo W, Yang K, Ye H, Yao J, Li J. WRKY10 Regulates Seed Size through the miR397a-LAC2 Module in Arabidopsis thaliana. Genes (Basel) 2024; 15:1040. [PMID: 39202400 PMCID: PMC11354073 DOI: 10.3390/genes15081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
In angiosperms, seed size is a critical trait that is influenced by the complex interplay between the endosperm and seed coat. The HAIKU (IKU) pathway, involving the transcription factor WRKY10, plays a crucial role in regulating seed size in Arabidopsis thaliana. However, the downstream targets of WRKY10 and their roles in seed size determination remain largely unexplored. Here, we identified LACCASE2 (LAC2), a laccase gene involved in lignin biosynthesis, as a new downstream target of WRKY10. We observed that the expression of LAC2 was upregulated in the mini3 mutant, which is defective in WRKY10. We demonstrated that WRKY10 directly binds to the promoter of miR397a, activating its expression. miR397a, in turn, represses the expression of LAC2. Genetic analyses revealed that a mutation in LAC2 or overexpression of miR397a partially rescued the small seed phenotype of the MINISEED3 (MINI3) mutant mini3. Conversely, the overexpression of LAC2 in the wild type led to a decrease in seed size. These findings suggest that LAC2 functions as a negative regulator of seed size, and its expression is modulated by WRKY10 through miR397a. Our study uncovers a novel WRKY10-miR397a-LAC2 pathway that regulates seed size in Arabidopsis, providing new insights into the complex regulatory network governing seed development in plants.
Collapse
Affiliation(s)
- Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hang Ye
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
9
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
10
|
Bacete L, Mélida H. Dynamics and mechanics of plant cell walls: insights into plant growth, defence, and stress response. PLANT MOLECULAR BIOLOGY 2023; 113:329-330. [PMID: 38108951 DOI: 10.1007/s11103-023-01395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Laura Bacete
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, 901 87, Sweden.
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain.
| |
Collapse
|