Zuo P, Li BX, Zhao XH, Wu YS, Ai XC, Zhang JP, Li LB, Kuang TY. Ultrafast carotenoid-to-chlorophyll singlet energy transfer in the cytochrome b6f complex from Bryopsis corticulans.
Biophys J 2006;
90:4145-54. [PMID:
16565047 PMCID:
PMC1459505 DOI:
10.1529/biophysj.105.076612]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast carotenoid-to-chlorophyll (Car-to-Chl) singlet excitation energy transfer in the cytochrome b(6)f (Cyt b(6)f) complex from Bryopsis corticulans is investigated by the use of femtosecond time-resolved absorption spectroscopy. For all-trans-alpha-carotene free in n-hexane, the lifetimes of the two low-lying singlet excited states, S(1)(2A(g)(-)) and S(2)(1B(u)(+)), are determined to be 14.3 +/- 0.4 ps and 230 +/- 10 fs, respectively. For the Cyt b(6)f complex, to which 9-cis-alpha-carotene is bound, the lifetime of the S(1)(2A(g)(-)) state remains unchanged, whereas that of the S(2)(1B(u)(+)) state is significantly reduced. In addition, a decay-to-rise correlation between the excited-state dynamics of alpha-carotene and Chl a is clearly observed. This spectroscopic evidence proves that the S(2)(1B(u)(+)) state is able to transfer electronic excitations to the Q(x) state of Chl a, whereas the S(1)(2A(g)(-)) state remains inactive. The time constant and the partial efficiency of the energy transfer are determined to be 240 +/- 40 fs and (49 +/- 4)%, respectively, which supports the overall efficiency of 24% determined with steady-state fluorescence spectroscopy. A scheme of the alpha-carotene-to-Chl a singlet energy transfer is proposed based on the excited-state dynamics of the pigments.
Collapse