1
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
2
|
Laisk A, Oja V. Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. PHOTOSYNTHESIS RESEARCH 2018; 136:63-82. [PMID: 28936722 DOI: 10.1007/s11120-017-0439-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 05/28/2023]
Abstract
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA- to QB be slower than that from QA- to QB-. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia
| |
Collapse
|
3
|
Vredenberg W. A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. PHOTOSYNTHESIS RESEARCH 2015; 124:87-106. [PMID: 25739901 PMCID: PMC4368846 DOI: 10.1007/s11120-015-0097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F (PP)(t) associated with the release of photochemical quenching are estimated from 10 µs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively. Application of these pulses allows estimations of (i) the actual value of the rate constants k L and k AB of the light excitation (photoreduction of QA) and of the dark re-oxidation of photoreduced QA ([Formula: see text]), respectively, (ii) the actual maximal normalized variable fluorescence [nF v] associated with 100 % photoreduction of QA of open RCs, and (iii) the actual size β of RCs in which the re-oxidation of [Formula: see text] is largely suppressed (QB-nonreducing RC with k AB ~ 0). The rate constants of the dark reversion of Fv associated with the release of photo-electrochemical quenching F (PE) and photo-electric stimulation F (CET) in the successive J-I and I-P parts of the thermal phase are in the range of (100 ms)(-1) and (1 s)(-1), respectively. The kinetics of fluorescence changes during and after the I-P phase are given special attention in relation to the hypothesis on the involvement of a Δµ H+-dependent effect during this phase and thereafter. Paper closes with author's personal view on the demands that should be fulfilled for chlorophyll fluorescence methods being a correct and unchallenged signature of photosynthesis in algae and plants.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands,
| |
Collapse
|
4
|
Schansker G, Tóth SZ, Holzwarth AR, Garab G. Chlorophyll a fluorescence: beyond the limits of the Q(A) model. PHOTOSYNTHESIS RESEARCH 2014; 120:43-58. [PMID: 23456268 DOI: 10.1007/s11120-013-9806-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353-372), the fluorescence changes reflect primarily changes in the redox state of Q(A), the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once Q(A) is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that-based on the presently available experimental findings-conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center Szeged, Hungarian Academy of Sciences, Szeged, 6701, Hungary,
| | | | | | | |
Collapse
|
5
|
Vredenberg W, Prasil O. On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. PHOTOSYNTHESIS RESEARCH 2013; 117:321-37. [PMID: 24046022 DOI: 10.1007/s11120-013-9917-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/26/2013] [Indexed: 05/24/2023]
Abstract
This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes. The overall quenching curve after a fluorescence-saturating pulse (SP) of 250-ms duration, commonly used in pulse amplitude modulation applications as the tool for estimating the maximal fluorescence (F m), has been termed P-O, in which P and O have the same meaning as used in the OJIP induction curve in the light. Deconvolution of this signal shows at least three distinguishable exponential phases with reciprocal rate constants of the order of 10, 10(2), and 10(3) ms. The size of the long (>10(3) ms) and moderate (~10(2) ms) lasting components relative to the complete quenching signal after an SP increases with the duration of the actinic pulse concomitantly with an increase in the reciprocal rate constants of the fast (~10 ms) and moderate quenching phases. Fluorescence responses upon single turnover flashes of 30-μs duration (STFs) given at discrete times during the P-O quenching were used as tools for identifying the quencher involved in the P-O quenching phase preceding the STF excitation. Results are difficult to interpret in terms of a single-hit two-state trapping mechanism with distinguishable quenching properties of open and closed reaction centers only. They give support for an earlier hypothesis on a double-hit three-state trapping mechanism in which the so-called semi-closed reaction centers of PSII are considered. In these trapping-competent centers the single reduced acceptor pair [PheQ A](1-), depending on the size of photoelectrochemically induced pH effects on the Q B-binding site, functions as an efficient fluorescence quencher.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands,
| | | |
Collapse
|
6
|
Bulychev AA, Osipov VA, Matorin DN, Vredenberg WJ. Effects of far-red light on fluorescence induction in infiltrated pea leaves under diminished ΔpH and Δφ components of the proton motive force. J Bioenerg Biomembr 2013; 45:37-45. [PMID: 23054078 DOI: 10.1007/s10863-012-9476-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Chlorophyll fluorescence induction curves induced by an actinic pulse of red light follow different kinetics in dark-adapted plant leaves and leaves preilluminated with far-red light. This influence of far-red light was abolished in leaves infiltrated with valinomycin known to eliminate the electrical (Δφ) component of the proton-motive force and was strongly enhanced in leaves infiltrated with nigericin that abolishes the ΔpH component. The supposed influence of ionophores on different components of the proton motive force was supported by differential effects of these ionophores on the induction curves of the millisecond component of chlorophyll delayed fluorescence. Comparison of fluorescence induction curves with the kinetics of P700 oxidation in the absence and presence of ionophores suggests that valinomycin facilitates a build-up of a rate-limiting step for electron transport at the site of plastoquinone oxidation, whereas nigericin effectively removes limitations at this site. Far-red light was found to be a particularly effective modulator of electron flows in chloroplasts in the absence of ΔpH backpressure on operation of the electron-transport chain.
Collapse
Affiliation(s)
- Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow 119991, Russia.
| | | | | | | |
Collapse
|
7
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
8
|
van Rensen JJS, Vredenberg WJ. Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm. PHOTOSYNTHESIS RESEARCH 2011; 108:191-200. [PMID: 21877236 PMCID: PMC3170478 DOI: 10.1007/s11120-011-9680-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 05/12/2023]
Abstract
Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times. The fast OJIP fluorescence rise curve was measured immediately after light exposure and after recovery during 1 day in laboratory room light. A fluorescence induction algorithm has been used for resolution and analysis of these curves. This algorithm includes photochemical and photo-electrochemical quenching release components and a photo-electrical dependent IP-component. The analysis revealed a substantial suppression of the photo-electrochemical component (even complete in the resistant biotype), a partial suppression of the photochemical component and a decrease in the fluorescence parameter F (o) after high light. These effects were recovered after 1 day in the indoor light.
Collapse
Affiliation(s)
- Jack J S van Rensen
- Laboratory of Plant Physiology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | | |
Collapse
|
9
|
Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1032-43. [PMID: 21669182 DOI: 10.1016/j.bbabio.2011.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/16/2022]
Abstract
Experiments were carried out to identify a process co-determining with Q(A) the fluorescence rise between F(0) and F(M). With 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), the fluorescence rise is sigmoidal, in its absence it is not. Lowering the temperature to -10°C the sigmoidicity is lost. It is shown that the sigmoidicity is due to the kinetic overlap between the reduction kinetics of Q(A) and a second process; an overlap that disappears at low temperature because the temperature dependences of the two processes differ. This second process can still relax at -60°C where recombination between Q(A)(-) and the donor side of photosystem (PS) II is blocked. This suggests that it is not a redox reaction but a conformational change can explain the data. Without DCMU, a reduced photosynthetic electron transport chain (ETC) is a pre-condition for reaching the F(M). About 40% of the variable fluorescence relaxes in 100ms. Re-induction while the ETC is still reduced takes a few ms and this is a photochemical process. The fact that the process can relax and be re-induced in the absence of changes in the redox state of the plastoquinone (PQ) pool implies that it is unrelated to the Q(B)-occupancy state and PQ-pool quenching. In both +/-DCMU the process studied represents ~30% of the fluorescence rise. The presented observations are best described within a conformational protein relaxation concept. In untreated leaves we assume that conformational changes are only induced when Q(A) is reduced and relax rapidly on re-oxidation. This would explain the relationship between the fluorescence rise and the ETC-reduction.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
10
|
Vredenberg W. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. Biosystems 2010; 103:138-51. [PMID: 21070830 DOI: 10.1016/j.biosystems.2010.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.
Collapse
Affiliation(s)
- Wim Vredenberg
- Dept. of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Vredenberg WJ. Kinetic models of photosystem II should accommodate the effect of donor side quenching on variable chlorophyll A fluorescence in the microseconds time range. PHOTOSYNTHESIS RESEARCH 2009; 102:99-101. [PMID: 19636807 PMCID: PMC2755756 DOI: 10.1007/s11120-009-9477-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/13/2009] [Indexed: 05/12/2023]
Abstract
Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105-119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173-180, 2001, Biochemistry 44:3123-3132, 2005; Belyaeva et al. in Biophysics 51(6):976-990, 2006), need a substantial correction with respect to magnitude of the normalized variable fluorescence associated with single turnover-induced charge separation in RCs of PS II. Their data are conclusive with the involvement of donor side quenching, the release of which occurs with a rate constant in the range of tens of ms(-1), and presumed to be associated with reduction of Y(+)(z) by the OEC.
Collapse
Affiliation(s)
- Wim J. Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Vredenberg W, Durchan M, Prásil O. Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1468-78. [PMID: 19576167 DOI: 10.1016/j.bbabio.2009.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
Abstract
This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range towards the plateau level F(pl) followed by a delayed and S-shaped rise towards a steady state level F(m) which is between three and four fold the initial dark fluorescence level F(o). Properties of this retarded slow rise are i) rate of dark recovery is (1-6 s)(-1), ii) suppression by low concentration of protonophores, iii) responsiveness to complementary single turnover flash excitation with transient amplitude towards a level F(m) which is between five and six fold the initial dark fluorescence level F(o) and iv) in harmony with and quantitatively interpretable in terms of a release of photoelectrochemical quenching controlled by the trans-thylakoid proton pump powered by the light-driven Q cycle. Data show evidence for a sizeable fluorescence increase upon release of (photo) electrochemical quenching, defined as qPE. Release of qPE occurs independent of photochemical quenching defined here as qPP even under conditions at which qPP = 1. The term photochemical quenching, hitherto symbolized by qP, will require a new definition, because it incorporates in its present form a sizeable photoelectrochemical component. The same is likely to be true for definition and use of qN as an indicator of non photochemical quenching.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| | | | | |
Collapse
|
13
|
Rubin A, Riznichenko G. Modeling of the Primary Processes in a Photosynthetic Membrane. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Modeling of Chlorophyll a Fluorescence Kinetics in Plant Cells: Derivation of a Descriptive Algorithm. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Response to Kinetic Models of Photosystem II Should Incorporate a Role for QB-Nonreducing Reaction Centers. Biophys J 2008. [DOI: 10.1529/biophysj.108.135566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Kinetic models of photosystem II should incorporate a role for QB-nonreducing reaction centers. Biophys J 2008; 95:3113-4; author reply 3115-6. [PMID: 18599639 DOI: 10.1529/biophysj.108.135426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Vredenberg WJ. Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 96:83-97. [PMID: 18197465 DOI: 10.1007/s11120-007-9287-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 12/21/2007] [Indexed: 05/24/2023]
Abstract
The fluorescence induction F(t) of dark-adapted chloroplasts has been studied in multi-turnover 1 s light flashes (MTFs). A theoretical expression for the initial fluorescence rise is derived from a set of rate equations that describes the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q (A) and the release of photochemical fluorescence quenching of photosystem II (PSII). The initial F(t) rise in the hundreds of mus time range is shown to follow the theoretical function dictated by the rate constants of light excitation (k (L)) and release of donor side quenching (k ( si )). The bi-exponential function shows sigmoidicity when one of the two rate constants differs by less than one order of magnitude from the other. It is shown, in agreement with the theory, that the sigmoidicity of the fluorescence rise is variable with light intensity and mainly, if not exclusively, determined by the ratio between rate of light excitation and the rate constant of donor side quenching release.
Collapse
Affiliation(s)
- Wim J Vredenberg
- Department of Plant Physiology, Wageningen University and Research (WUR), Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| |
Collapse
|
18
|
Algorithm for analysis of OJDIP fluorescence induction curves in terms of photo- and electrochemical events in photosystems of plant cells: derivation and application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:58-65. [PMID: 18329277 DOI: 10.1016/j.jphotobiol.2008.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/21/2022]
Abstract
The algorithm for simulation of the OJDIP fluorescence induction curve in chloroplasts under variable conditions is presented. It is derived from analyzes of chlorophyll a fluorescence kinetics upon excitation with single- (STF), twin- (TTF) and repetitive STF excitations, and from the rate equations that describe the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q(A) and the release of photochemical fluorescence quenching of photosystem II (PSII) in multi-turnover excitation (MTF). The fluorescence induction algorithm (FIA) considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P component (phase) which probably is associated with a photo-electric interaction between PSI and PSII. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair [PheQ(A)] in Q(B)-nonreducing reaction centers (RCs) and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PSII. Application of and results with the algorithm are illustrated for MTF-induced OJDIP curves, measured in dark-adapted, in STF pre-excited and in DCMU inhibited thylakoids.
Collapse
|