1
|
Uragami C, Sato H, Yukihira N, Fujiwara M, Kosumi D, Gardiner AT, Cogdell RJ, Hashimoto H. Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Dai L, Tan LM, Jiang YL, Shi Y, Wang P, Zhang JP, Otomo ZY. Orientation assignment of LH2 and LH1-RC complexes from Thermochromatium tepidum reconstituted in PC liposome and their ultrafast excitation dynamics comparison between in artificial and in natural chromatophores. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Razjivin AP, Lukashev EP, Kompanets VO, Kozlovsky VS, Ashikhmin AA, Chekalin SV, Moskalenko AA, Paschenko VZ. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible. PHOTOSYNTHESIS RESEARCH 2017; 133:289-295. [PMID: 28205063 DOI: 10.1007/s11120-017-0341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.
Collapse
Affiliation(s)
- A P Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - E P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - V O Kompanets
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - V S Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - A A Ashikhmin
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - S V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - A A Moskalenko
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
4
|
Magdaong NCM, Niedzwiedzki DM, Goodson C, Blankenship RE. Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis. J Phys Chem B 2016; 120:5159-71. [DOI: 10.1021/acs.jpcb.6b04307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikki Cecil M. Magdaong
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Carrie Goodson
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Robert E. Blankenship
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| |
Collapse
|
5
|
Uragami C, Sugai Y, Hanjo K, Sumino A, Fujii R, Nishioka T, Kinoshita I, Dewa T, Nango M, Gardiner AT, Cogdell RJ, Hashimoto H. Observation of hybrid artificial photosynthetic membranes using peripheral and core antennae from two different species of photosynthetic bacteria by AFM and fluorescence micro-spectroscopy. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Canniffe DP, Hunter CN. Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1611-6. [PMID: 25058304 PMCID: PMC4331041 DOI: 10.1016/j.bbabio.2014.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/03/2022]
Abstract
Bacteriochlorophyll b has the most red-shifted absorbance maximum of all naturally occurring photopigments. It has a characteristic ethylidene group at the C8 position in place of the more common ethyl group, the product of a C8-vinyl reductase, which is carried by the majority of chlorophylls and bacteriochlorophylls used in photosynthesis. The subsequent and first step exclusive to bacteriochlorophyll biosynthesis, the reduction of the C7 = C8 bond, is catalyzed by chlorophyllide oxidoreductase. It has been demonstrated that the enzyme from bacteriochlorophyll a-utilizing bacteria can catalyze the formation of compounds carrying an ethyl group at C8 from both ethyl- and vinyl-carrying substrates, indicating a surprising additional C8-vinyl reductase function, while the enzyme from organisms producing BChl b could only catalyze C7 = C8 reduction with a vinyl substrate, but this product carried an ethylidene group at the C8 position. We have replaced the native chlorophyllide oxidoreductase-encoding genes of Rhodobacter sphaeroides with those from Blastochloris viridis, but the switch from bacteriochlorophyll a to b biosynthesis is only detected when the native conventional C8-vinyl reductase is absent. We propose a non-enzymatic mechanism for ethylidene group formation based on the absence of cellular C8-vinyl reductase activity. We engineer the production of a foreign photopigment in Rhodobacter sphaeroides. Native COR-encoding genes are replaced with those from Blastochloris viridis. Bacteriochlorophyll b is produced upon additional deletion of conventional 8VR. We propose that loss of 8VR activity by COR leads to ethylidene bond formation.
Collapse
Affiliation(s)
- Daniel P Canniffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Kosumi D, Nakagawa K, Sakai S, Nagaoka Y, Maruta S, Sugisaki M, Dewa T, Nango M, Hashimoto H. Ultrafast intramolecular relaxation dynamics of Mg- and Zn-bacteriochlorophyll a. J Chem Phys 2014; 139:034311. [PMID: 23883031 DOI: 10.1063/1.4813526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption∕fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Qx state, but has almost no effect on the Qy state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Qx or Qy state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Qx or Qy state, we showed that the Qx state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Qx state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Qx and Qy states.
Collapse
Affiliation(s)
- Daisuke Kosumi
- The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Osaka 558-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sumino A, Dewa T, Noji T, Nakano Y, Watanabe N, Hildner R, Bösch N, Köhler J, Nango M. Influence of Phospholipid Composition on Self-Assembly and Energy-Transfer Efficiency in Networks of Light-Harvesting 2 Complexes. J Phys Chem B 2013; 117:10395-404. [DOI: 10.1021/jp4047819] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ayumi Sumino
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takehisa Dewa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Tomoyasu Noji
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Nakano
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Natsuko Watanabe
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Richard Hildner
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Nils Bösch
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Mamoru Nango
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Sumino A, Dewa T, Kondo M, Morii T, Hashimoto H, Gardiner AT, Cogdell RJ, Nango M. Selective assembly of photosynthetic antenna proteins into a domain-structured lipid bilayer for the construction of artificial photosynthetic antenna systems: structural analysis of the assembly using surface plasmon resonance and atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1092-1099. [PMID: 21204531 DOI: 10.1021/la103281q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two types of photosynthetic membrane proteins, the peripheral antenna complex (LH2) and the core antenna/reaction center complex (LH1-RC), play an essential role in the primary process of purple bacterial photosynthesis, that is, capturing light energy, transferring it to the RC where it is used in subsequent charge separation. Establishment of experimental platforms is required to understand the function of the supramolecular assembly of LH2 and LH1-RC molecules into arrays. In this study, we assembled LH2 and LH1-RC arrays into domain-structured planar lipid bilayers placed on a coverglass using stepwise combinations of vesicle-to-planar membrane formation and vesicle fusion methods. First, it was shown that assembly of LH2 and LH1-RC in planar lipid bilayers, through vesicle-to-planar membrane formation, could be confirmed by absorption spectroscopy and high resolution atomic force microscopy (AFM). Second, formation of a planar membrane incorporating LH2 molecules made by the vesicle fusion method was corroborated by AFM together with quantitative analysis by surface plasmon resonance (SPR). By combining planar membrane formation and vesicle fusion, in a stepwise manner, LH2 and LH1-RC were successfully organized in the domain-structured planar lipid membrane. This methodology for construction of LH2/LH1-RC assemblies will be a useful experimental platform with which to investigate energy transfer from LH2 to LH1-RC where the relative arrangement of these two complexes can be controlled.
Collapse
Affiliation(s)
- Ayumi Sumino
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Biophys J 2010; 97:2464-73. [PMID: 19883589 DOI: 10.1016/j.bpj.2009.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022] Open
Abstract
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Collapse
|