1
|
Gao RY, Zou JW, Shi YP, Li DH, Zheng J, Zhang JP. The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy. J Phys Chem Lett 2025; 16:789-794. [PMID: 39805070 DOI: 10.1021/acs.jpclett.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430-1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm-1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
Collapse
Affiliation(s)
- Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Wei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yan-Ping Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
2
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Sheth S, Gotico P, Herrero C, Quaranta A, Aukauloo A, Leibl W. Proton Domino Reactions at an Imidazole Relay Control the Oxidation of a Tyr Z-His 190 Artificial Mimic of Photosystem II. Chemistry 2024; 30:e202400862. [PMID: 38676548 DOI: 10.1002/chem.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
A close mimic of P680 and the TyrosineZ-Histidine190 pair in photosystem II (PS II) has been synthesized using a ruthenium chromophore and imidazole-phenol ligands. The intramolecular oxidation of the ligands by the photoproduced Ru(III) species is characterized by a small driving force, very similar to PS II where the complexity of kinetics was attributed to the reversibility of electron transfer steps. Laser flash photolysis revealed biphasic kinetics for ligand oxidation. The fast phase (τ<50 ns) corresponds to partial oxidation of the imidazole-phenol ligand, proton transfer within the hydrogen bond, and formation of a neutral phenoxyl radical. The slow phase (5-9 μs) corresponds to full oxidation of the ligand which is kinetically controlled by deprotonation of the distant 1-nitrogen of the imidazolium. These results show that imidazole with its two protonatable sites plays a special role as a proton relay in a 'proton domino' reaction.
Collapse
Affiliation(s)
- Sujitraj Sheth
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
- Current affiliation , National Key Laboratory of Green Pesticide, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Philipp Gotico
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| | - Christian Herrero
- CNRS, Institut de Chimie Moléculaire et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Annamaria Quaranta
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| | - Ally Aukauloo
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
- CNRS, Institut de Chimie Moléculaire et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Winfried Leibl
- CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
5
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
6
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Chen M, Sawicki A, Wang F. Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism. Microorganisms 2023; 11:2305. [PMID: 37764149 PMCID: PMC10535343 DOI: 10.3390/microorganisms11092305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
8
|
Khan S, Sengupta S, Khan MA, Sk MP, Naskar S. Electrocatalytic water oxidation by heteroleptic ruthenium complexes of 2,6-bis(benzimidazolyl)pyridine Scaffold: a mechanistic investigation. Dalton Trans 2023. [PMID: 37194336 DOI: 10.1039/d3dt00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three monomeric ruthenium complexes with anionic ligands [RuII(L)(L1)(DMSO)][ClO4] (1), [RuII(L)(L2)(DMSO)] [PF6] (2), and [RuII(L)(L3)(DMSO)][PF6] (3) [L = pyrazine carboxylate, L1 = 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine, L2 = 4,5-dmbimpy = 2,6-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)pyridine, L3 = 4-Fbimpy = 2,6-bis(5-fluoro-1H-benzo[d]imidazol-2-yl)pyridine, DMSO = dimethyl sulfoxide] as electrocatalysts for water oxidation are reported herein. The single crystal X-ray structure of the complexes reveals the presence of a DMSO molecule, which is supposed to be the labile group undergoing water exchange under the experimental condition of electrocatalysis. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) study shows the appearance of the catalytic wave for water oxidation at Ru(IV/V) oxidation. LSV, CV, and bulk electrolysis technique has been used to study the redox properties of the complexes and their electrocatalytic activity. A systematic variation on the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. Electrochemical and theoretical (density functional theory) studies support the O-O bond formation during water oxidation passes through water nucleophilic attack (WNA) for all the ruthenium complexes. At pH 1, the maximum turnover frequency (TOFmax) has been experimentally obtained as 17556.25 s-1, 31648.41 s-1, and 39.69 s-1 for complexes 1, 2, and 3, respectively, from the foot of wave analysis (FOWA). The high value of TOFmax for complex 2 indicates its efficiency as an electrocatalyst for water oxidation in a homogeneous medium.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla institute of Technology-Mesra, Ranchi, India
| | - Md Adnan Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | | | - Subhendu Naskar
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| |
Collapse
|
9
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
10
|
Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Proc Natl Acad Sci U S A 2022; 119:e2204510119. [PMID: 35969781 PMCID: PMC9407654 DOI: 10.1073/pnas.2204510119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and chitin and are important for biomass conversion in the biosphere as well as in biorefineries. The target polysaccharides of LPMOs naturally occur in copolymeric structures such as plant cell walls and insect cuticles that are rich in phenolic compounds, which contribute rigidity and stiffness to these materials. Since these phenolics may be photoactive and since LPMO action depends on reducing equivalents, we hypothesized that LPMOs may enable light-driven biomass conversion. Here, we show that redox compounds naturally present in shed insect exoskeletons enable harvesting of light energy to drive LPMO reactions and thus biomass conversion. The primary underlying mechanism is that irradiation of exoskeletons with visible light leads to the generation of H2O2, which fuels LPMO peroxygenase reactions. Experiments with a cellulose model substrate show that the impact of light depends on both light and exoskeleton dosage and that light-driven LPMO activity is inhibited by a competing H2O2-consuming enzyme. Degradation experiments with the chitin-rich exoskeletons themselves show that solubilization of chitin by a chitin-active LPMO is promoted by light. The fact that LPMO reactions, and likely reactions catalyzed by other biomass-converting redox enzymes, are fueled by light-driven abiotic reactions in nature provides an enzyme-based explanation for the known impact of visible light on biomass conversion.
Collapse
|
11
|
Yoneda Y, Arsenault EA, Yang SJ, Orcutt K, Iwai M, Fleming GR. The initial charge separation step in oxygenic photosynthesis. Nat Commun 2022; 13:2275. [PMID: 35477708 PMCID: PMC9046298 DOI: 10.1038/s41467-022-29983-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Photosystem II is crucial for life on Earth as it provides oxygen as a result of photoinduced electron transfer and water splitting reactions. The excited state dynamics of the photosystem II-reaction center (PSII-RC) has been a matter of vivid debate because the absorption spectra of the embedded chromophores significantly overlap and hence it is extremely difficult to distinguish transients. Here, we report the two-dimensional electronic-vibrational spectroscopic study of the PSII-RC. The simultaneous resolution along both the visible excitation and infrared detection axis is crucial in allowing for the character of the excitonic states and interplay between them to be clearly distinguished. In particular, this work demonstrates that the mixed exciton-charge transfer state, previously proposed to be responsible for the far-red light operation of photosynthesis, is characterized by the ChlD1+Phe radical pair and can be directly prepared upon photoexcitation. Further, we find that the initial electron acceptor in the PSII-RC is Phe, rather than PD1, regardless of excitation wavelength.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, United States
| | - Shiun-Jr Yang
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States.
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, United States.
| |
Collapse
|
12
|
|
13
|
Searching for a Unique Exciton Model of Photosynthetic Pigment–Protein Complexes: Photosystem II Reaction Center Study by Differential Evolution. MATHEMATICS 2022. [DOI: 10.3390/math10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge about the function of the photosynthetic machinery of living species. To simulate the PPC optical response, it is necessary to use semiclassical theories describing the effect of external fields–matter interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper, we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations. Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated experimental data as the target functions instead of those actually measured. Only 2 of 10 DE strategies have shown the best performance of the optimization algorithm. With the best tuning parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.
Collapse
|
14
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
15
|
Tamura H, Saito K, Ishikita H. Long-Range Electron Tunneling from the Primary to Secondary Quinones in Photosystem II Enhanced by Hydrogen Bonds with a Nonheme Fe Complex. J Phys Chem B 2021; 125:13460-13466. [PMID: 34875835 DOI: 10.1021/acs.jpcb.1c09538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms governing the long-range electron tunneling from the primary (QA) to secondary (QB) quinones in photosystem II are clarified by analyzing superexchange pathways through a nonheme Fe complex, using a quantum mechanics/molecular mechanics/polarizable continuum model approach. The electron tunneling rate is evaluated using the Marcus-Levich-Jortner theory considering electronic coupling, energy difference, and Franck-Condon factor. The superexchange QA → QB electron tunneling is enhanced by hybridized σ/σ* orbitals of histidines (D2-His214 and D1-His215) via penetration of the wave function into hydrogen bonds with both QA and QB. Despite a large energy gap to the intermediate states, the contributions of the histidine σ/σ* orbitals to the superexchange coupling are larger than those of π/π* orbitals. Fe2+ is not an essential component for the QA → QB electron tunneling because hybridized histidine molecular orbitals can be coupled with both QA and QB simultaneously in the absence of Fe d orbitals.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
16
|
Electronic Structure of Tyrosyl D Radical of Photosystem II, as Revealed by 2D-Hyperfine Sublevel Correlation Spectroscopy. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7090131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological water oxidation takes place in Photosystem II (PSII), a multi-subunit protein located in thylakoid membranes of higher plant chloroplasts and cyanobacteria. The catalytic site of PSII is a Mn4Ca cluster and is known as the oxygen evolving complex (OEC) of PSII. Two tyrosine residues D1-Tyr161 (YZ) and D2-Tyr160 (YD) are symmetrically placed in the two core subunits D1 and D2 and participate in proton coupled electron transfer reactions. YZ of PSII is near the OEC and mediates electron coupled proton transfer from Mn4Ca to the photooxidizable chlorophyll species P680+. YD does not directly interact with OEC, but is crucial for modulating the various S oxidation states of the OEC. In PSII from higher plants the environment of YD• radical has been extensively characterized only in spinach (Spinacia oleracea) Mn-depleted non functional PSII membranes. Here, we present a 2D-HYSCORE investigation in functional PSII of spinach to determine the electronic structure of YD• radical. The hyperfine couplings of the protons that interact with the YD• radical are determined and the relevant assignment is provided. A discussion on the similarities and differences between the present results and the results from studies performed in non functional PSII membranes from higher plants and PSII preparations from other organisms is given.
Collapse
|
17
|
Affiliation(s)
- Aditi Vatsa
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| |
Collapse
|
18
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
19
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
20
|
Golub M, Hussein R, Ibrahim M, Hecht M, Wieland DCF, Martel A, Machado B, Zouni A, Pieper J. Solution Structure of the Detergent-Photosystem II Core Complex Investigated by Small-Angle Scattering Techniques. J Phys Chem B 2020; 124:8583-8592. [PMID: 32816484 DOI: 10.1021/acs.jpcb.0c07169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Albeit achieving the X-ray diffraction structure of dimeric photosystem II core complexes (dPSIIcc) at the atomic resolution, the nature of the detergent belt surrounding dPSIIcc remains ambiguous. Therefore, the solution structure of the whole detergent-protein complex of dPSIIcc of Thermosynechococcus elongatus (T. elongatus) solubilized in n-dodecyl-ß-d-maltoside (ßDM) was investigated by a combination of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) with contrast variation. First, the structure of dPSIIcc was studied separately in SANS experiments using a contrast of 5% D2O. Guinier analysis reveals that the dPSIIcc solution is virtually free of aggregation in the studied concentration range of 2-10 mg/mL dPSIIcc, and characterized by a radius of gyration of 62 Å. A structure reconstitution shows that dPSIIcc in buffer solution widely retains the crystal structure reported by X-ray free electron laser studies at room temperature with a slight expansion of the entire protein. Additional SANS experiments on dPSIIcc samples in a buffer solution containing 75% D2O provide information about the size and shape of the whole detergent-dPSIIcc. The maximum position of P(r) function increases to 68 Å, i.e., it is about 6 Å larger than that of dPSIIcc only, thus indicating the presence of an additional structure. Thus, it can be concluded that dPSIIcc is surrounded by a monomolecular belt of detergent molecules under appropriate solubilization conditions. The homogeneity of the ßDM-dPSIIcc solutions was also verified using dynamic light scattering. Complementary SAXS experiments indicate the presence of unbound detergent micelles by a separate peak consistent with a spherical shape possessing a radius of about 40 Å. The latter structure also contributes to the SANS data but rather broadens the SANS curve artificially. Without the simultaneous inspection of SANS and SAXS data, this effect may lead to an apparent underestimation of the size of the PS II-detergent complex. The formation of larger unbound detergent aggregates in solution prior to crystallization may have a significant effect on the crystal formation or quality of the ßDM-dPSIIcc.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | - Rana Hussein
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Mohamed Ibrahim
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Max Hecht
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | | | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Barbara Machado
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Athina Zouni
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| |
Collapse
|
21
|
Li N, Liu J, Dong B, Lan Y. Polyoxometalate‐Based Compounds for Photo‐ and Electrocatalytic Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008054] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ning Li
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jiang Liu
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| | - Bao‐Xia Dong
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ya‐Qian Lan
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| |
Collapse
|
22
|
Li N, Liu J, Dong B, Lan Y. Polyoxometalate‐Based Compounds for Photo‐ and Electrocatalytic Applications. Angew Chem Int Ed Engl 2020; 59:20779-20793. [DOI: 10.1002/anie.202008054] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Ning Li
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jiang Liu
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| | - Bao‐Xia Dong
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ya‐Qian Lan
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| |
Collapse
|
23
|
Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. Enzymes 2020; 47:491-515. [PMID: 32951833 DOI: 10.1016/bs.enz.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.
Collapse
|
24
|
Hammonds M, Tran TT, Tran YHH, Ha-Thi MH, Pino T. Time-Resolved Resonant Raman Spectroscopy of the Photoinduced Electron Transfer from Ruthenium(II) Trisbipyridine to Methyl Viologen. J Phys Chem A 2020; 124:2736-2740. [PMID: 32183517 DOI: 10.1021/acs.jpca.9b10949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first time-resolved resonant Raman (TR3) spectra of photoinduced charge transfer from [Ru(bpy)3]2+ to methyl viologen, with observations of vibrational structure. The presence of singly charged methyl viologen in solution is noted by the appearance of several spectroscopic lines, which are visible in the spectra following subtraction of reagent molecules. Assignments are confirmed using both density functional theory (DFT) calculations and literature values and are shown to be consistent with transient absorption spectroscopy data. This presents proof-of-concept for the application of TR3 in mechanistic studies of photocatalytic systems.
Collapse
Affiliation(s)
- Mark Hammonds
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Thu-Trang Tran
- Faculty of Physics and Technology, Thai Nguyen University of Science, Thai Nguyen, Vietnam
| | - Yen Hoang Hai Tran
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Thomas Pino
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| |
Collapse
|
25
|
Asthana M, Syiemlieh I, Kumar A, Lal RA. Direct oxidation of alcohols catalysed by heterometallic complex [CuNi(bz)3(bpy)2]ClO4 to aldehydes and ketones mediated by hydrogen peroxide as a terminal oxidant. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Zhang HT, Zhang MT. The Application of Pincer Ligand in Catalytic Water Splitting. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Jin J, Zhang S, Wu B, Chen Z, Zhang G, Tratnyek PG. Enhanced Photooxidation of Hydroquinone by Acetylacetone, a Novel Photosensitizer and Electron Shuttle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11232-11239. [PMID: 31469553 DOI: 10.1021/acs.est.9b02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quinones are important electron shuttles as well as micropollutants in the nature. Acetylacetone (AA) is a newly recognized electron shuttle in aqueous media exposed to UV irradiation. Herein, we studied the interactions between AA and hydroquinone (QH2) under steady-state and transient photochemical conditions to clarify the possible reactions and consequences if QH2 and AA coexist in a solution. Steady-state experimental results demonstrate that the interactions between AA and QH2 were strongly affected by dissolved oxygen. In O2-rich solutions, the phototransformation of QH2 was AA-independent. Both QH2 and AA utilize O2 as the electron acceptor, but in O2-insufficient solutions, AA became an important electron acceptor for the oxidation of QH2. In all cases, the coexistence of AA increased the phototransformation of QH2, whereas the decomposition of AA in O2-saturated and oversaturated solutions was inhibited by the presence of QH2. The underlying mechanisms were investigated by a combination of laser flash photolysis (LFP) and reduction potential analysis. The LFP results show that the excited AA serves as a better electron shuttle than QH2. As a consequence, AA might regulate the redox cycling of quinones, leading to significant effects on many processes, ranging from photosynthesis and respiration to photodegradation.
Collapse
Affiliation(s)
- Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland 97239 , Oregon , United States
| |
Collapse
|
28
|
Das A, Nutting JE, Stahl SS. Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem Sci 2019; 10:7542-7548. [PMID: 31588305 PMCID: PMC6761876 DOI: 10.1039/c9sc02609f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
High-valent iron-oxo complexes are key intermediates in C-H functionalization reactions. Herein, we report the generation of a (TAML)Fe-oxo species (TAML = tetraamido macrocyclic ligand) via electrochemical proton-coupled oxidation of the corresponding (TAML)FeIII-OH2 complex. Cyclic voltammetry (CV) and spectroelectrochemical studies are used to elucidate the relevant (TAML)Fe redox processes and determine the predominant (TAML)Fe species present in solution during bulk electrolysis. Evidence for iron(iv) and iron(v) species is presented, and these species are used in the electrochemical oxygenation of benzylic C-H bonds and dehydrogenation of alcohols to ketones.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| |
Collapse
|
29
|
Seel CJ, Gulder T. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem 2019; 20:1871-1897. [PMID: 30864191 DOI: 10.1002/cbic.201800806] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.
Collapse
Affiliation(s)
- Catharina J Seel
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
30
|
Assunção R, Zaharieva I, Dau H. Ammonia as a substrate-water analogue in photosynthetic water oxidation: Influence on activation barrier of the O2-formation step. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:533-540. [DOI: 10.1016/j.bbabio.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/15/2022]
|
31
|
Brahmachari U, Gonthier JF, Sherrill CD, Barry BA. Water Bridges Conduct Sequential Proton Transfer in Photosynthetic Oxygen Evolution. J Phys Chem B 2019; 123:4487-4496. [DOI: 10.1021/acs.jpcb.9b01523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Munir A, Joya KS, Ul Haq T, Babar NUA, Hussain SZ, Qurashi A, Ullah N, Hussain I. Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. CHEMSUSCHEM 2019; 12:1517-1548. [PMID: 30485695 DOI: 10.1002/cssc.201802069] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Indexed: 05/12/2023]
Abstract
A sustainable future demands innovative breakthroughs in science and technology today, especially in the energy sector. Earth-abundant resources can be explored and used to develop renewable and sustainable resources of energy to meet the ever-increasing global energy demand. Efficient solar-powered conversion systems exploiting inexpensive and robust catalytic materials for the photo- and photo-electro-catalytic water splitting, photovoltaic cells, fuel cells, and usage of waste products (such as CO2 ) as chemical fuels are appealing solutions. Many electrocatalysts and nanomaterials have been extensively studied in this regard. Low overpotentials, catalytic stability, and accessibility remain major challenges. Metal nanoclusters (NCs, ≤3 nm) with dimensions between molecule and nanoparticles (NPs) are innovative materials in catalysis. They behave like a "superatom" with exciting size- and facet-dependent properties and dynamic intrinsic characteristics. Being an emerging field in recent scientific endeavors, metal NCs are believed to replace the natural photosystem II for the generation of green electrons in a viable way to facilitate the challenging catalytic processes in energy-conversion schemes. This Review aims to discuss metal NCs in terms of their unique physicochemical properties, possible synthetic approaches by wet chemistry, and various applications (mostly recent advances in the electrochemical and photo-electrochemical water splitting cycle and the oxygen reduction reaction in fuel cells). Moreover, the significant role that MNCs play in dye-sensitized solar cells and nanoarrays as a light-harvesting antenna, the electrochemical reduction of CO2 into fuels, and concluding remarks about the present and future perspectives of MNCs in the frontiers of surface science are also critically reviewed.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Noor-Ul-Ain Babar
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Najeeb Ullah
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET-Peshawar),Jamrud Road, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| |
Collapse
|
33
|
Photoinduced electron transfer within supramolecular hemoprotein co-assemblies and heterodimers containing Fe and Zn porphyrins. J Inorg Biochem 2019; 193:42-51. [DOI: 10.1016/j.jinorgbio.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
|
34
|
Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J. Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. PHOTOSYNTHESIS RESEARCH 2019; 139:93-106. [PMID: 30191436 PMCID: PMC6373315 DOI: 10.1007/s11120-018-0574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 05/17/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0-4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA- in PSII is significantly less negative in C. merolae (Em = - 104 mV) than in spinach (Em = - 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA-/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA- to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julian David Janna Olmos
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Petko Chernev
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87, Umeå, Sweden.
| |
Collapse
|
35
|
Endo K, Kobayashi K, Wang HT, Chu HA, Shen JR, Wada H. Site-directed mutagenesis of two amino acid residues in cytochrome b 559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity. PHOTOSYNTHESIS RESEARCH 2019; 139:267-279. [PMID: 30039358 DOI: 10.1007/s11120-018-0555-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.
Collapse
Affiliation(s)
- Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hsing-Ting Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, Republic of China
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, Republic of China
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
36
|
Choi Y, Jeon D, Choi Y, Kim D, Kim N, Gu M, Bae S, Lee T, Lee HW, Kim BS, Ryu J. Interface Engineering of Hematite with Nacre-like Catalytic Multilayers for Solar Water Oxidation. ACS NANO 2019; 13:467-475. [PMID: 30512922 DOI: 10.1021/acsnano.8b06848] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An efficient water oxidation photoanode based on hematite has been designed and fabricated by tailored assembly of graphene oxide (GO) nanosheets and cobalt polyoxometalate (Co-POM) water oxidation catalysts into a nacre-like multilayer architecture on a hematite photoanode. The deposition of catalytic multilayers provides a high photocatalytic efficiency and photoelectrochemical stability to underlying hematite photoanodes. Compared to the bare counterpart, the catalytic multilayer electrode exhibits a significantly higher photocurrent density and large cathodic shift in onset potential (∼369 mV) even at neutral pH conditions due to the improved charge transport and catalytic efficiency from the rational and precise assembly of GO and Co-POM. Unexpectedly, the polymeric base layer deposited prior to the catalytic multilayers improves the performance even more by facilitating the transfer of photogenerated holes for water oxidation through modification of the flat band potential of the underlying photoelectrode. This approach utilizing polymeric base and catalytic multilayers provides an insight into the design of highly efficient photoelectrodes and devices for artificial photosynthesis.
Collapse
Affiliation(s)
- Yeongkyu Choi
- Department of Chemistry, School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Yuri Choi
- Department of Chemistry, School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dongseok Kim
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Minsu Gu
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Sanghyun Bae
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Taemin Lee
- Department of Chemistry, School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyun-Wook Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
37
|
Pannwitz A, Wenger OS. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun (Camb) 2019; 55:4004-4014. [DOI: 10.1039/c9cc00821g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced PCET meets catalysis, and the accumulation of multiple redox equivalents is of key importance.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
38
|
Dey A, Dana J, Aute S, Das A, Ghosh HN. Hydrogen bond assisted photoinduced intramolecular electron transfer and proton coupled electron transfer in an ultrafast time domain using a ruthenium-anthraquinone dyad. Photochem Photobiol Sci 2019; 18:2430-2441. [DOI: 10.1039/c9pp00135b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PCET kinetics for the formation of charge-separated states was explored by using femtosecond transient absorption spectroscopy. Hydrogen bonding between water and the reduced anthraquinone accounted for thermodynamic and kinetic stabilization.
Collapse
Affiliation(s)
- Ananta Dey
- CSIR-Central salt & Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| | - Jayanta Dana
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
| | - Sunil Aute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
- India
- dCSIR National chemical Laboratory
- Pune
| | - Amitava Das
- CSIR-Central salt & Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| | - Hirendra N. Ghosh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Institute of Nano Science and Technology
| |
Collapse
|
39
|
Yao M, Liu Y, Fei L, Zhou Y, Wang F, Chen J. Self-Adaptable Quinone-Quinol Exchange Mechanism of Photosystem II. J Phys Chem B 2018; 122:10478-10489. [PMID: 30380868 DOI: 10.1021/acs.jpcb.8b09641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The step of plastoquinone (PQ) reduction to plastoquinol (PQH2) can regulate the photoreaction rate of photosystem II (PSII). To experimentally unravel the PQ-PQH2 exchange mechanism of PSII, we investigate the reaction kinetics of plant PSII membranes and the subunits-trimmed PSII core complexes with various PQ analogues and directly probe the reductions of PQ and other quinones by 257 nm resonance Raman scattering. Two phases of quinone concentration effect on the reaction rate originate from the quinone-quinol exchange mechanism. The results indicate that high concentrations of quinone, more than one movable quinone molecule per PSII reaction center, could trigger quinone-quinol exchange adapting to the unidirectional route: quinones enter through channel I and/or III, and quinols leave through channel II. A weak quinone binding site near QB probably plays a crucial role in pushing quinone-quinol exchange forward in the unidirectional route. Our work provides experimental proofs demonstrating a self-adaptable quinone-quinol exchange mechanism of PSII.
Collapse
Affiliation(s)
- Mingdong Yao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China.,Key Laboratory of Systems Bioengineering (Ministry of Education) , Tianjin University , Tianjin 300072 , China
| | - Ying Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621907 , China
| | - Liping Fei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Ye Zhou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory , Jiangyou 621908 , China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
40
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Fujihashi Y, Higashi M, Ishizaki A. Intramolecular Vibrations Complement the Robustness of Primary Charge Separation in a Dimer Model of the Photosystem II Reaction Center. J Phys Chem Lett 2018; 9:4921-4929. [PMID: 30095266 DOI: 10.1021/acs.jpclett.8b02119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The energy conversion of oxygenic photosynthesis is triggered by primary charge separation in proteins at the photosystem II reaction center. Here, we investigate the impacts of the protein environment and intramolecular vibrations on primary charge separation at the photosystem II reaction center. This is accomplished by combining the quantum dynamic theories of condensed phase electron transfer with quantum chemical calculations to evaluate the vibrational Huang-Rhys factors of chlorophyll and pheophytin molecules. We report that individual vibrational modes play a minor role in promoting charge separation, contrary to the discussion in recent publications. Nevertheless, these small contributions accumulate to considerably influence the charge separation rate, resulting in subpicosecond charge separation almost independent of the driving force and temperature. We suggest that the intramolecular vibrations complement the robustness of the charge separation in the photosystem II reaction center against the inherently large static disorder of the involved electronic energies.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Institute for Molecular Science , National Institutes of Natural Sciences , Okazaki 444-8585 , Japan
| | - Masahiro Higashi
- Department of Chemistry, Biology, and Marine Science , University of the Ryukyus , 1 Senbaru , Nishihara , Okinawa 903-0213 , Japan
| | - Akihito Ishizaki
- Institute for Molecular Science , National Institutes of Natural Sciences , Okazaki 444-8585 , Japan
- School of Physical Sciences , The Graduate University for Advanced Studies , Okazaki 444-8585 , Japan
| |
Collapse
|
42
|
Ha-Thi MH, Pham VT, Pino T, Maslova V, Quaranta A, Lefumeux C, Leibl W, Aukauloo A. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy. Photochem Photobiol Sci 2018; 17:903-909. [PMID: 29855023 DOI: 10.1039/c8pp00048d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
Collapse
Affiliation(s)
- M-H Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brahmachari U, Guo Z, Konecny SE, Obi ENC, Barry BA. Engineering Proton Transfer in Photosynthetic Oxygen Evolution: Chloride, Nitrate, and Trehalose Reorganize a Hydrogen-Bonding Network. J Phys Chem B 2018; 122:6702-6711. [DOI: 10.1021/acs.jpcb.8b02856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Udita Brahmachari
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhanjun Guo
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara E. Konecny
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Emmanuela N. C. Obi
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Wu H, Li X, Tung C, Wu L. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700684. [PMID: 29721417 PMCID: PMC5908380 DOI: 10.1002/advs.201700684] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The increasing demand for sustainable and environmentally benign energy has stimulated intense research to establish highly efficient photo-electrochemical (PEC) cells for direct solar-to-fuel conversion via water splitting. Light absorption, as the initial step of the catalytic process, is regarded as the foundation of establishing highly efficient PEC systems. To make full use of visible light, sensitization on photoelectrodes using either molecular dyes or semiconducting quantum dots provides a promising method. In this field, however, there remain many fundamental issues to be solved, which need in-depth study. Here, fundamental knowledge of PEC systems is introduced to enable readers a better understanding of this field. Then, the development history and current state in both molecular dye- and quantum dot-sensitized photocathodes for PEC water splitting are discussed. A systematical comparison between the two systems has been made. Special emphasis is placed on the research of quantum dot-sensitized photocathodes, which have shown superiority in both efficiency and durability towards PEC water splitting at the present stage. Finally, the opportunities and challenges in the future for sensitized PEC water-splitting systems are proposed.
Collapse
Affiliation(s)
- Hao‐Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
45
|
Ahmadova N, Mamedov F. Formation of tyrosine radicals in photosystem II under far-red illumination. PHOTOSYNTHESIS RESEARCH 2018; 136:93-106. [PMID: 28924898 PMCID: PMC5851703 DOI: 10.1007/s11120-017-0442-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 05/27/2023]
Abstract
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680+. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ• at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680+ occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680+) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.
Collapse
Affiliation(s)
- Nigar Ahmadova
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
46
|
Jäger P, Brendle K, Schneider E, Kohaut S, Armbruster MK, Fink K, Weis P, Kappes MM. Photodissociation of Free Metalloporphyrin Dimer Multianions. J Phys Chem A 2018; 122:2974-2982. [PMID: 29490134 DOI: 10.1021/acs.jpca.8b00641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick Jäger
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Katrina Brendle
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Erik Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Stephan Kohaut
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Markus K. Armbruster
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
47
|
Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E, Richaud P, Brugière S, Couté Y, Nurizzo D, Müller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. An algal photoenzyme converts fatty acids to hydrocarbons. Science 2018; 357:903-907. [PMID: 28860382 DOI: 10.1126/science.aan6349] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Although many organisms capture or respond to sunlight, few enzymes are known to be driven by light. Among these are DNA photolyases and the photosynthetic reaction centers. Here, we show that the microalga Chlorella variabilis NC64A harbors a photoenzyme that acts in lipid metabolism. This enzyme belongs to an algae-specific clade of the glucose-methanol-choline oxidoreductase family and catalyzes the decarboxylation of free fatty acids to n-alkanes or -alkenes in response to blue light. Crystal structure of the protein reveals a fatty acid-binding site in a hydrophobic tunnel leading to the light-capturing flavin adenine dinucleotide (FAD) cofactor. The decarboxylation is initiated through electron abstraction from the fatty acid by the photoexcited FAD with a quantum yield >80%. This photoenzyme, which we name fatty acid photodecarboxylase, may be useful in light-driven, bio-based production of hydrocarbons.
Collapse
Affiliation(s)
- Damien Sorigué
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphan Cuiné
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphanie Blangy
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Solène Moulin
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Emmanuelle Billon
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pierre Richaud
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - David Pignol
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pascal Arnoux
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Fred Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
48
|
The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Sci Rep 2018; 8:2837. [PMID: 29434283 PMCID: PMC5809461 DOI: 10.1038/s41598-018-21101-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Charge separation is a key component of the reactions cascade of photosynthesis, by which solar energy is converted to chemical energy. From this photochemical reaction, two radicals of opposite charge are formed, a highly reducing anion and a highly oxidising cation. We have previously proposed that the cation after far-red light excitation is located on a component different from PD1, which is the location of the primary electron hole after visible light excitation. Here, we attempt to provide further insight into the location of the primary charge separation upon far-red light excitation of PS II, using the EPR signal of the spin polarized 3P680 as a probe. We demonstrate that, under far-red light illumination, the spin polarized 3P680 is not formed, despite the primary charge separation still occurring at these conditions. We propose that this is because under far-red light excitation, the primary electron hole is localized on ChlD1, rather than on PD1. The fact that identical samples have demonstrated charge separation upon both far-red and visible light excitation supports our hypothesis that two pathways for primary charge separation exist in parallel in PS II reaction centres. These pathways are excited and activated dependent of the wavelength applied.
Collapse
|
49
|
Gallagher AT, Lee JY, Kathiresan V, Anderson JS, Hoffman BM, Harris TD. A structurally-characterized peroxomanganese(iv) porphyrin from reversible O 2 binding within a metal-organic framework. Chem Sci 2017; 9:1596-1603. [PMID: 29675204 PMCID: PMC5890324 DOI: 10.1039/c7sc03739b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022] Open
Abstract
Within a MOF, a side-on peroxomanganese(iv) porphyrin has been isolated and comprehensively examined.
The role of peroxometal species as reactive intermediates in myriad biological processes has motivated the synthesis and study of analogous molecular model complexes. Peroxomanganese(iv) porphyrin complexes are of particular interest, owing to their potential ability to form from reversible O2 binding, yet have been exceedingly difficult to isolate and characterize in molecular form. Alternatively, immobilization of metalloporphyrin sites within a metal–organic framework (MOF) can enable the study of interactions between low-coordinate metal centers and gaseous substrates, without interference from bimolecular reactions and axial ligation by solvent molecules. Here, we employ this approach to isolate the first rigorously four-coordinate manganese(ii) porphyrin complex and examine its reactivity with O2 using infrared spectroscopy, single-crystal X-ray diffraction, EPR spectroscopy, and O2 adsorption analysis. X-ray diffraction experiments reveal for the first time a peroxomanganese(iv) porphyrin species, which exhibits a side-on, η2 binding mode. Infrared and EPR spectroscopic data confirm the formulation of a peroxomanganese(iv) electronic structure, and show that O2 binding is reversible at ambient temperature, in contrast to what has been observed in molecular form. Finally, O2 gas adsorption measurements are employed to quantify the enthalpy of O2 binding as hads = –49.6(8) kJ mol–1. This enthalpy is considerably higher than in the corresponding Fe- and Co-based MOFs, and is found to increase with increasing reductive capacity of the MII/III redox couple.
Collapse
Affiliation(s)
- Audrey T Gallagher
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Jung Yoon Lee
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Venkatesan Kathiresan
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - John S Anderson
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| |
Collapse
|
50
|
Cantú Reinhard FG, Barman P, Mukherjee G, Kumar J, Kumar D, Kumar D, Sastri CV, de Visser SP. Keto-Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex. J Am Chem Soc 2017; 139:18328-18338. [PMID: 29148746 DOI: 10.1021/jacs.7b10033] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants. In this work, we report a combined spectroscopy, kinetics and computational study on aldehyde deformylation by two side-on manganese(III)-peroxo complexes with bispidine ligands. Both manganese(III)-peroxo complexes are characterized by UV-vis and mass spectrometry techniques, and their reactivity patterns with aldehydes was investigated. We find a novel mechanism for the reaction that is initiated by a hydrogen atom abstraction reaction, which enables a keto-enol tautomerization in the substrate. This is an essential step in the mechanism that makes an electrophilic attack on the olefin bond possible as the attack on the aldehyde carbonyl is too high in energy. Kinetics studies determine a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium, while replacing the transferring hydrogen atom by a methyl group makes the substrate inactive and hence confirm the hypothesized mechanism. Our new mechanism is confirmed with density functional theory modeling on the full mechanism and rationalized through valence bond and thermochemical cycles. Our unprecedented new mechanism may have relevance to biological and biomimetic chemistry processes in general and gives insight into the reactivity patterns of metal-peroxo and metal-hydroperoxo intermediates in general.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Jitendra Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Deep Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|