1
|
Cao K, Sun F, Xin Z, Cao Y, Zhu X, Tian H, Cao T, Ma J, Mu W, Sun J, Zhou R, Gao Z, Meng C. Enhanced Production of High-Value Porphyrin Compound Heme by Metabolic Engineering Modification and Mixotrophic Cultivation of Synechocystis sp. PCC6803. Mar Drugs 2024; 22:378. [PMID: 39330259 PMCID: PMC11433640 DOI: 10.3390/md22090378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Heme, as an essential cofactor and source of iron for cells, holds great promise in various areas, e.g., food and medicine. In this study, the model cyanobacteria Synechocystis sp. PCC6803 was used as a host for heme synthesis. The heme synthesis pathway and its competitive pathway were modified to obtain an engineered cyanobacteria with high heme production, and the total heme production of Synechocystis sp. PCC6803 was further enhanced by the optimization of the culture conditions and the enhancement of mixotrophic ability. The co-expression of hemC, hemF, hemH, and the knockout of pcyA, a key gene in the heme catabolic pathway, resulted in a 3.83-fold increase in the heme production of the wild type, while the knockout of chlH, a gene encoding a Mg-chelatase subunit and the key enzyme of the chlorophyll synthesis pathway, resulted in a 7.96-fold increase in the heme production of the wild type; further increased to 2.05 mg/L, its heme production was 10.25-fold that of the wild type under optimized mixotrophic culture conditions. Synechocystis sp. PCC6803 has shown great potential as a cell factory for photosynthetic carbon sequestration for heme production. This study provides novel engineering targets and research directions for constructing microbial cell factories for efficient heme production.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (Y.C.); (X.Z.); (W.M.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Zechen Xin
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Yujiao Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (Y.C.); (X.Z.); (W.M.)
| | - Xiangyu Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (Y.C.); (X.Z.); (W.M.)
| | - Huan Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Tong Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Weidong Mu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (Y.C.); (X.Z.); (W.M.)
| | - Jiankun Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Runlong Zhou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; (K.C.); (Z.X.); (H.T.); (T.C.); (J.M.); (J.S.); (R.Z.)
| |
Collapse
|
2
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
3
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
4
|
Xie Y, Chen L, Sun T, Jiang J, Tian L, Cui J, Zhang W. A transporter Slr1512 involved in bicarbonate and pH-dependent acclimation mechanism to high light stress in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148336. [PMID: 33181099 DOI: 10.1016/j.bbabio.2020.148336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
High light (HL) exposure leads to photoinhibition and excess accumulation of toxic reactive oxygen species (ROS) in photosynthetic organisms, negatively impacting the global primary production. In this study, by screening a mutant library, a gene related with bicarbonate transport, slr1512, was found involved in HL acclimation in model cyanobacterium Synechocystis sp. PCC 6803. Comparative growth analysis showed that the slr1512 knockout mutant dramatically enhanced the tolerance of Synechocystis towards long-term HL stress (200 μmol photons m-2 s-1) than the wild type, achieving an enhanced growth by ~1.95-folds after 10 d. The phenotype differences between Δslr1512 and the wild type were analyzed via absorption spectrum and chlorophyll a content measurement. In addition, the accessible bicarbonate controlled by slr1512 and decreased PSII activity were demonstrated, and they were found to be the key factors affecting the tolerance of Synechocystis against HL stress. Further analysis confirmed that intracellular bicarbonate can significantly affect the activity of photosystem II, leading to the altered accumulation of toxic ROS under HL. Finally, a comparative transcriptomics was applied to determine the differential responses to HL between Δslr1512 and the wild type. This work provides useful insights to long-term acclimation mechanisms towards HL and valuable information to guide the future tolerance engineering of cyanobacteria against HL.
Collapse
Affiliation(s)
- Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
5
|
Ledermann B, Aras M, Frankenberg-Dinkel N. Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins. MODERN TOPICS IN THE PHOTOTROPHIC PROKARYOTES 2017:305-340. [DOI: 10.1007/978-3-319-51365-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments. Life (Basel) 2015; 5:1172-203. [PMID: 25830590 PMCID: PMC4500134 DOI: 10.3390/life5021172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes.
Collapse
|
7
|
Cheng D, He Q. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803. PLoS One 2014; 9:e101743. [PMID: 25010795 PMCID: PMC4092027 DOI: 10.1371/journal.pone.0101743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter), feoB (encoding a ferrous iron transporter), bfr genes (encoding bacterioferritins), ho genes (encoding heme oxygenases), isiA (encoding a chlorophyll-binding protein), and furA (encoding a ferric uptake regulator). The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Qingfang He
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| |
Collapse
|
8
|
Ludwig M, Pandelia ME, Chew CY, Zhang B, Golbeck JH, Krebs C, Bryant DA. ChlR protein of Synechococcus sp. PCC 7002 is a transcription activator that uses an oxygen-sensitive [4Fe-4S] cluster to control genes involved in pigment biosynthesis. J Biol Chem 2014; 289:16624-39. [PMID: 24782315 DOI: 10.1074/jbc.m114.561233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Synechococcus sp. PCC 7002 and many other cyanobacteria have two genes that encode key enzymes involved in chlorophyll a, biliverdin, and heme biosynthesis: acsFI/acsFII, ho1/ho2, and hemF/hemN. Under atmospheric O2 levels, AcsFI synthesizes 3,8-divinyl protochlorophyllide from Mg-protoporphyrin IX monomethyl ester, Ho1 oxidatively cleaves heme to form biliverdin, and HemF oxidizes coproporphyrinogen III to protoporphyrinogen IX. Under microoxic conditions, another set of genes directs the synthesis of alternative enzymes AcsFII, Ho2, and HemN. In Synechococcus sp. PCC 7002, open reading frame SynPCC7002_A1993 encodes a MarR family transcriptional regulator, which is located immediately upstream from the operon comprising acsFII, ho2, hemN, and desF (the latter encodes a putative fatty acid desaturase). Deletion and complementation analyses showed that this gene, denoted chlR, is a transcriptional activator that is essential for transcription of the acsFII-ho2-hemN-desF operon under microoxic conditions. Global transcriptome analyses showed that ChlR controls the expression of only these four genes. Co-expression of chlR with a yfp reporter gene under the control of the acsFII promoter from Synechocystis sp. PCC 6803 in Escherichia coli demonstrated that no other cyanobacterium-specific components are required for proper functioning of this regulatory circuit. A combination of analytical methods and Mössbauer and EPR spectroscopies showed that reconstituted, recombinant ChlR forms homodimers that harbor one oxygen-sensitive [4Fe-4S] cluster. We conclude that ChlR is a transcriptional activator that uses a [4Fe-4S] cluster to sense O2 levels and thereby control the expression of the acsFII-ho2-hemN-desF operon.
Collapse
Affiliation(s)
- Marcus Ludwig
- From the Departments of Biochemistry and Molecular Biology and
| | - Maria-Eirini Pandelia
- Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Chyue Yie Chew
- From the Departments of Biochemistry and Molecular Biology and
| | - Bo Zhang
- Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - John H Golbeck
- From the Departments of Biochemistry and Molecular Biology and Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Carsten Krebs
- From the Departments of Biochemistry and Molecular Biology and Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Departments of Biochemistry and Molecular Biology and the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
9
|
Aoki R, Takeda T, Omata T, Ihara K, Fujita Y. MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J Biol Chem 2012; 287:13500-7. [PMID: 22375005 PMCID: PMC3339928 DOI: 10.1074/jbc.m112.346205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/22/2012] [Indexed: 01/17/2023] Open
Abstract
Oxygen is required for three enzyme reactions in chlorophyll and bilin biosynthesis pathways: coproporphyrinogen III oxidase (HemF), heme oxygenase (HO1), and Mg-protoporphyrin IX monomethylester cyclase (ChlA(I)). The cyanobacterium Synechocystis sp. PCC 6803 has alternative enzymes, HemN, HO2, and ChlA(II), to supply chlorophyll/bilins even under low-oxygen environments. The three genes form an operon, chlA(II)-ho2-hemN, that is induced in response to low-oxygen conditions to bypass the oxygen-dependent reactions. Here we identified a transcriptional regulator for the induction of the operon in response to low-oxygen conditions. A pseudorevertant, Δho1R, was isolated from a HO1-lacking mutant Δho1 that is lethal under aerobic conditions. Δho1R grew well even under aerobic conditions. In Δho1R, HO2 that is induced only under low-oxygen conditions was anomalously expressed under aerobic conditions to complement the loss of HO1. A G-to-C transversion in sll1512 causing the amino acid change from aspartate 35 to histidine was identified as the relevant mutation by resequencing of the Δho1R genome. Sll1512 is a MarR-type transcriptional regulator. An sll1512-lacking mutant grew poorly under low-oxygen conditions with a remarked decrease in Chl content that would be caused by the suppressed induction of the chlA(II) and hemN genes in Chl biosynthesis under low-oxygen conditions. These results demonstrated that Sll1512 is an activator in response to low-oxygen environments and that the D35H variant becomes a constitutive activator. This hypothesis was supported by a gel shift assay showing that the Sll1512-D35H variant binds to the DNA fragment upstream of the operon. We propose to name sll1512 chlR.
Collapse
Affiliation(s)
- Rina Aoki
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tomoya Takeda
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuo Omata
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kunio Ihara
- the Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan, and
| | - Yuichi Fujita
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Aoki R, Goto T, Fujita Y. A Heme Oxygenase Isoform is Essential for Aerobic Growth in the Cyanobacterium Synechocystis sp. PCC 6803: Modes of Differential Operation of Two Isoforms/Enzymes to Adapt to Low Oxygen Environments in Cyanobacteria. ACTA ACUST UNITED AC 2011; 52:1744-56. [DOI: 10.1093/pcp/pcr108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Yilmaz M, Phlips EJ. Diversity of and selection acting on cylindrospermopsin cyrB gene adenylation domain sequences in Florida. Appl Environ Microbiol 2011; 77:2502-7. [PMID: 21296947 PMCID: PMC3067417 DOI: 10.1128/aem.02252-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/25/2011] [Indexed: 11/20/2022] Open
Abstract
Aphanizomenon ovalisporum is the only confirmed cylindrospermopsin producer identified in the United States to date. On the other hand, Cylindrospermopsis raciborskii is a prominent feature of many lakes in Florida and other regions of the United States. To see the variation in cylindrospermopsin cyrB gene adenylation domain sequences and possibly discover new cylindrospermopsin producers, we collected water samples for a 3-year period from 17 different systems in Florida. Positive amplicons were cloned and sequenced, revealing that approximately 92% of sequences were A. ovalisporum-like (>99% identity). Interestingly, 6% of sequences were very similar (>99% identity) to cyrB sequences of C. raciborskii from Australia and of Aphanizomenon sp. from Germany. Neutrality tests suggest that A. ovalisporum-like cyrB adenylation domain sequences are under purifying selection, with abundant low-frequency polymorphisms within the population. On the other hand, when compared between species by codon-based methods, amino acids of CyrB also seem to be under purifying selection, in accordance with the one proposed amino acid thought to be activated by the CyrB adenylation domain.
Collapse
Affiliation(s)
- Mete Yilmaz
- School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st Street, Gainesville, Florida 32653, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey
| | - Edward J. Phlips
- School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st Street, Gainesville, Florida 32653, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
12
|
Ludwig M, Bryant DA. Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiD™) Sequencing of cDNA. Front Microbiol 2011; 2:41. [PMID: 21779275 PMCID: PMC3133671 DOI: 10.3389/fmicb.2011.00041] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/22/2011] [Indexed: 11/24/2022] Open
Abstract
The genome of the unicellular, euryhaline cyanobacterium Synechococcus sp. PCC 7002 encodes about 3200 proteins. Transcripts were detected for nearly all annotated open reading frames by a global transcriptomic analysis by Next-Generation (SOLiD™) sequencing of cDNA. In the cDNA samples sequenced, ∼90% of the mapped sequences were derived from the 16S and 23S ribosomal RNAs and ∼10% of the sequences were derived from mRNAs. In cells grown photoautotrophically under standard conditions [38°C, 1% (v/v) CO(2) in air, 250 μmol photons m(-2) s(-1)], the highest transcript levels (up to 2% of the total mRNA for the most abundantly transcribed genes; e.g., cpcAB, psbA, psaA) were generally derived from genes encoding structural components of the photosynthetic apparatus. High-light exposure for 1 h caused changes in transcript levels for genes encoding proteins of the photosynthetic apparatus, Type-1 NADH dehydrogenase complex and ATP synthase, whereas dark incubation for 1 h resulted in a global decrease in transcript levels for photosynthesis-related genes and an increase in transcript levels for genes involved in carbohydrate degradation. Transcript levels for pyruvate kinase and the pyruvate dehydrogenase complex decreased sharply in cells incubated in the dark. Under dark anoxic (fermentative) conditions, transcript changes indicated a global decrease in transcripts for respiratory proteins and suggested that cells employ an alternative phosphoenolpyruvate degradation pathway via phosphoenolpyruvate synthase (ppsA) and the pyruvate:ferredoxin oxidoreductase (nifJ). Finally, the data suggested that an apparent operon involved in tetrapyrrole biosynthesis and fatty acid desaturation, acsF2-ho2-hemN2-desF, may be regulated by oxygen concentration.
Collapse
Affiliation(s)
- Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
13
|
Chemical reactivity of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 hemoglobins: covalent heme attachment and bishistidine coordination. J Biol Inorg Chem 2011; 16:539-52. [PMID: 21240532 DOI: 10.1007/s00775-011-0754-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).
Collapse
|