1
|
Tani K, Kanno R, Kikuchi R, Kawamura S, Nagashima KVP, Hall M, Takahashi A, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, Wang-Otomo ZY. Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1-RC complex. Nat Commun 2022; 13:1904. [PMID: 35393413 PMCID: PMC8991256 DOI: 10.1038/s41467-022-29453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 β-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 β-polypeptides, indicating a critical role for protein-U in controlling the number of αβ-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Riku Kikuchi
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Saki Kawamura
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Malgorzata Hall
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ai Takahashi
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Bruno M Humbel
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | |
Collapse
|
2
|
Tani K, Kanno R, Makino Y, Hall M, Takenouchi M, Imanishi M, Yu LJ, Overmann J, Madigan MT, Kimura Y, Mizoguchi A, Humbel BM, Wang-Otomo ZY. Cryo-EM structure of a Ca 2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Nat Commun 2020; 11:4955. [PMID: 33009385 PMCID: PMC7532537 DOI: 10.1038/s41467-020-18748-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The light-harvesting-reaction center complex (LH1-RC) from the purple phototrophic bacterium Thiorhodovibrio strain 970 exhibits an LH1 absorption maximum at 960 nm, the most red-shifted absorption for any bacteriochlorophyll (BChl) a-containing species. Here we present a cryo-EM structure of the strain 970 LH1-RC complex at 2.82 Å resolution. The LH1 forms a closed ring structure composed of sixteen pairs of the αβ-polypeptides. Sixteen Ca ions are present in the LH1 C-terminal domain and are coordinated by residues from the αβ-polypeptides that are hydrogen-bonded to BChl a. The Ca2+-facilitated hydrogen-bonding network forms the structural basis of the unusual LH1 redshift. The structure also revealed the arrangement of multiple forms of α- and β-polypeptides in an individual LH1 ring. Such organization indicates a mechanism of interplay between the expression and assembly of the LH1 complex that is regulated through interactions with the RC subunits inside. Here the authors report a cryo-EM structure of the light-harvesting-reaction center complex (LH1- RC) from the purple phototrophic bacterium Thiorhodovibrio strain 970, providing insights into the mechanisms that underlie the absorbance properties of both the LH1 and the RC of this spectrally unusual purple bacterium.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Yuki Makino
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Malgorzata Hall
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | | - Michie Imanishi
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany.,Faculty of Life Science, Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Bruno M Humbel
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | |
Collapse
|
3
|
Nagatsuma S, Gotou K, Yamashita T, Yu LJ, Shen JR, Madigan M, Kimura Y, Wang-Otomo ZY. Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:461-468. [DOI: 10.1016/j.bbabio.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
|
4
|
Dai L, Tan LM, Jiang YL, Shi Y, Wang P, Zhang JP, Otomo ZY. Orientation assignment of LH2 and LH1-RC complexes from Thermochromatium tepidum reconstituted in PC liposome and their ultrafast excitation dynamics comparison between in artificial and in natural chromatophores. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Rätsep M, Timpmann K, Kawakami T, Wang-Otomo ZY, Freiberg A. Spectrally Selective Spectroscopy of Native Ca-Containing and Ba-Substituted LH1-RC Core Complexes from Thermochromatium tepidum. J Phys Chem B 2017; 121:10318-10326. [PMID: 29058423 DOI: 10.1021/acs.jpcb.7b07841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The LH1-RC core complex from the thermophilic photosynthetic purple sulfur bacterium Thermochromatium tepidum has recently attracted interest of many researchers because of its several unique properties, such as increased robustness against environmental hardships and the much red-shifted near-infrared absorption spectrum of the LH1 antenna exciton polarons. The known near-atomic-resolution crystal structure of the complex well supported this attention. Yet several mechanistic aspects of the complex prominence remained to be understood. In this work, samples of the native, Ca2+-containing core complexes were investigated along with those destabilized by Ba2+ substitution, using various spectrally selective steady-state and picosecond time-resolved spectroscopic techniques at physiological and cryogenic temperatures. As a result, the current interpretation of exciton spectra of the complex was significantly clarified. Specifically, by evaluating the homogeneous and inhomogeneous compositions of the spectra, we showed that there is little to no effect of cation substitution on the dynamic or kinetic properties of antenna excitons. Reasons of the extra red shift of absorption/fluorescence spectra observed in the Ca-LH1-RC and not in the Ba-LH1-RC complex should thus be searched in subtle structural differences following the inclusion of different cations into the core complex scaffold.
Collapse
Affiliation(s)
- Margus Rätsep
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Kõu Timpmann
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia
| | | | | | - Arvi Freiberg
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu , Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
6
|
Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex. Proc Natl Acad Sci U S A 2017; 114:10906-10911. [PMID: 28935692 DOI: 10.1073/pnas.1703584114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αβ-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, β-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.
Collapse
|
7
|
Yu LJ, Kawakami T, Kimura Y, Wang-Otomo ZY. Structural Basis for the Unusual Q y Red-Shift and Enhanced Thermostability of the LH1 Complex from Thermochromatium tepidum. Biochemistry 2016; 55:6495-6504. [PMID: 27933779 DOI: 10.1021/acs.biochem.6b00742] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the majority of the core light-harvesting complexes (LH1) in purple photosynthetic bacteria exhibit a Qy absorption band in the range of 870-890 nm, LH1 from the thermophilic bacterium Thermochromatium tepidum displays the Qy band at 915 nm with an enhanced thermostability. These properties are regulated by Ca2+ ions. Substitution of the Ca2+ with other divalent metal ions results in a complex with the Qy band blue-shifted to 880-890 nm and a reduced thermostability. Following the recent publication of the structure of the Ca-bound LH1-reaction center (RC) complex [Niwa, S., et al. (2014) Nature 508, 228], we have determined the crystal structures of the Sr- and Ba-substituted LH1-RC complexes with the LH1 Qy band at 888 nm. Sixteen Sr2+ and Ba2+ ions are identified in the LH1 complexes. Both Sr2+ and Ba2+ are located at the same positions, and these are clearly different from, though close to, the Ca2+-binding sites. Conformational rearrangement induced by the substitution is limited to the metal-binding sites. Unlike the Ca-LH1-RC complex, only the α-polypeptides are involved in the Sr and Ba coordinations in LH1. The difference in the thermostability between these complexes can be attributed to the different patterns of the network formed by metal binding. The Sr- and Ba-LH1-RC complexes form a single-ring network by the LH1 α-polypeptides only, in contrast to the double-ring network composed of both α- and β-polypeptides in the Ca-LH1-RC complex. On the basis of the structural information, a combined effect of hydrogen bonding, structural integrity, and charge distribution is considered to influence the spectral properties of the core antenna complex.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Faculty of Science, Ibaraki University , Mito 310-8512, Japan
| | | | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University , Nada, Kobe 657-8501, Japan
| | | |
Collapse
|
8
|
Khrenova MG, Grigorenko BL, Zhang JP, Wang P, Nemukhin AV. Computational characterization of the all-atom structure and the calcium binding sites of the LH1–RC core complex from Thermochromatium tepidum. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The all-atom model of the photosynthetic core complex composed of the light-harvesting system (LH1) and the reaction center (RC) from a thermophilic purple bacterium Thermochromatium tepidum is constructed. We compare the structural parameters of this complex embedded into the lipid bilayer to those reported for the recently resolved crystal structure of the LH1–RC. We focus on the local structure of the binding sites of the calcium ions regulating stability and optical spectra of the core complex. We show the differences between the computationally derived model and the crystal structure at the extramembrane region of the LH1 polypeptides where the calcium binding sites are located.
Collapse
Affiliation(s)
- M. G. Khrenova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - B. L. Grigorenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russia
| | - J.-P. Zhang
- Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - P. Wang
- Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - A. V. Nemukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russia
| |
Collapse
|
9
|
|
10
|
Kimura Y, Kawakami T, Yu LJ, Yoshimura M, Kobayashi M, Wang-Otomo ZY. Characterization of the quinones in purple sulfur bacteriumThermochromatium tepidum. FEBS Lett 2015; 589:1761-5. [DOI: 10.1016/j.febslet.2015.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/27/2022]
|
11
|
All-atom structures and calcium binding sites of the bacterial photosynthetic LH1-RC core complex from Thermochromatium tepidum. J Mol Model 2014; 20:2287. [DOI: 10.1007/s00894-014-2287-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
|
12
|
Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 2014; 508:228-32. [DOI: 10.1038/nature13197] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
|
13
|
Li Y, Kimura Y, Arikawa T, Wang-Otomo ZY, Ohno T. ATR–FTIR Detection of Metal-Sensitive Structural Changes in the Light-Harvesting 1 Reaction Center Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2013; 52:9001-8. [DOI: 10.1021/bi401033y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yong Li
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Teruhisa Arikawa
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | | | - Takashi Ohno
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang JP, Wang ZY, Ohno T. Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1022-9. [DOI: 10.1016/j.bbabio.2012.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/07/2012] [Accepted: 03/11/2012] [Indexed: 11/16/2022]
|
15
|
Jakob-Grun S, Radeck J, Braun P. Ca(2+)-binding reduces conformational flexibility of RC-LH1 core complex from thermophile Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2012; 111:139-147. [PMID: 22367594 DOI: 10.1007/s11120-012-9727-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
The light-harvesting complex, LH1, of thermophile purple bacteria Thermochromatium tepidum consists of an array of α- and β-polypeptides which assemble the photoactive bacteriochlorophyll and closely interact with the membrane-lipids. In this study, we investigated the effect of calcium and manganese ions on the protein structure and thermostability of the reaction centre (RC)-LH1/lipid complex. The binding of Ca(2+), but not Mn(2+) is shown to shift the LH1 Q ( y ) absorption maximum from ~889 to 915 nm and to significantly raise the thermostability of the RC-LH1 complex. The ATR-FTIR spectra indicate that interaction of Ca(2+) as monitored by the carboxylates' vibration of aspartate residues, but not Mn(2+) induces changes in the α-helix packing arrangement. The reduced rate of (1)H/(2)H exchange of proteins' amide protons shows that the accessibility to (2)H(2)O is significantly lowered in Ca(2+)-substituted RC-LH1/lipid complexes. In particular, exchange with the associated lipid molecules, is significantly retarded. These results suggest that the thermostability of the RC-LH1 complex is raised by the distinct interaction with calcium cations which reduces the RC-LH1/lipid dynamics, particularly, at the membrane-water interface.
Collapse
Affiliation(s)
- Selma Jakob-Grun
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
16
|
Kimura Y, Inada Y, Yu LJ, Wang ZY, Ohno T. A Spectroscopic Variant of the Light-Harvesting 1 Core Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2011; 50:3638-48. [DOI: 10.1021/bi200278u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukihiro Kimura
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yuta Inada
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Zheng-Yu Wang
- Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Takashi Ohno
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|