1
|
Huang G, Dong S, Ma L, Li L, Ju J, Wang MJ, Zhang JP, Sui SF, Qin X. Cryo-EM structure of a minimal reaction center-light-harvesting complex from the phototrophic bacterium Chloroflexus aurantiacus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:967-978. [PMID: 39912559 DOI: 10.1111/jipb.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Photosynthetic organisms have developed various light-harvesting antenna systems to capture light and transfer energy to reaction centers (RCs). Simultaneous utilization of the integral membrane light-harvesting antenna (LH complex) and the extrinsic antenna (chlorosomes) makes the phototrophic bacterium Chloroflexus (Cfx.) aurantiacus an ideal model for studying filamentous anoxygenic phototrophs (FAPs). Here, we determined the structure of a minimal RC-LH photocomplex from Cfx. aurantiacus J-10-fl (CaRC-LH) at 3.05-Å resolution. The CaRC-LH binds only to seven LH subunits, which form a crescent-shaped antenna surrounding the movable menaquinone-10 (QB) binding site of CaRC. In this complex with minimal LH units, an extra antenna is required to ensure sufficient light-gathering, providing a clear explanation for the presence of chlorosomes in Cfx. aurantiacus. More importantly, the semicircle of the antenna represents a novel RC-LH assembly pattern. Our structure provides a basis for understanding the existence of chlorosomes in Cfx. aurantiacus and the possible assembly pattern of RC-LH.
Collapse
Affiliation(s)
- Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinxin Ju
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Mei-Jiao Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jian-Ping Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
2
|
Xin J, Min Z, Yu L, Yuan X, Liu A, Wu W, Zhang X, He H, Wu J, Xin Y, Blankenship RE, Tian C, Xu X. Cryo-EM structure of HQNO-bound alternative complex III from the anoxygenic phototrophic bacterium Chloroflexus aurantiacus. THE PLANT CELL 2024; 36:4212-4233. [PMID: 38299372 PMCID: PMC11635291 DOI: 10.1093/plcell/koae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide. Besides 6 canonical subunits (ActABCDEF), the structures revealed conformations of 2 previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance, spectroelectrochemistry, enzymatic analyses, and molecular dynamics simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases-evolved coupling mechanism in bacterial energy conservation.
Collapse
Affiliation(s)
- Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Triplet state quenching of bacteriochlorophyll c aggregates in a protein-free environment of a chlorosome interior. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Biohybrid solar cells: Fundamentals, progress, and challenges. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Shoji S, Ogawa T, Hashishin T, Tamiaki H. Self-Assemblies of Zinc Bacteriochlorophyll-d Analogues Having Amide, Ester, and Urea Groups as Substituents at 17-Position and Observation of Lamellar Supramolecular Nanostructures. Chemphyschem 2018; 19:913-920. [PMID: 29231276 DOI: 10.1002/cphc.201701044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Abstract
Chlorosomes are unique light-harvesting apparatuses in photosynthetic green bacteria. Single chlorosomes contain a large number of bacteriochlorophyll (BChl)-c, -d, -e, and -f molecules, which self-assemble without protein assistance. These BChl self-assemblies involving specific intermolecular interactions (Mg⋅⋅⋅O32 -H⋅⋅⋅O=C131 and π-π stacks of chlorin skeletons) in a chlorosome have been reported to be round-shaped rods (or tubes) with diameters of 5 or 10 nm, or lamellae with a layer spacing of approximately 2 nm. Herein, the self-assembly of synthetic zinc BChl-d analogues having ester, amide, and urea groups in the 17-substituent is reported. Spectroscopic analyses indicate that the zinc BChl-d analogues self-assemble in a nonpolar organic solvent in a similar manner to natural chlorosomal BChls with additional assistance by hydrogen-bonding of secondary amide (or urea) groups (CON-H⋅⋅⋅O=CNH). Microscopic analyses of the supramolecules of a zinc BChl-d analogue bearing amide and urea groups show round- or square-shaped rods with widths of about 65 nm. Cryogenic TEM shows a lamellar arrangement of the zinc chlorin with a layer spacing of 1.5 nm inside the rod. Similar thick rods are also visible in the micrographs of self-assemblies of zinc BChl-d analogues with one or two secondary amide moieties in the 17-substituent.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hashishin
- Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
6
|
Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R. Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 2016; 6:25583. [PMID: 27149693 PMCID: PMC4857733 DOI: 10.1038/srep25583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Spatial segregation of photosystems in the thylakoid membrane (lateral heterogeneity) observed in plants and in the green algae is usually considered to be absent in photoautotrophs possessing secondary plastids, such as diatoms. Contrary to this assumption, here we show that thylakoid membranes in the chloroplast of a marine diatom, Phaeodactylum tricornutum, contain large areas occupied exclusively by a supercomplex of photosystem I (PSI) and its associated Lhcr antenna. These membrane areas, hundreds of nanometers in size, comprise hundreds of tightly packed PSI-antenna complexes while lacking other components of the photosynthetic electron transport chain. Analyses of the spatial distribution of the PSI-Lhcr complexes have indicated elliptical particles, each 14 × 17 nm in diameter. On larger scales, the red-enhanced illumination exerts a significant effect on the ultrastructure of chloroplasts, creating superstacks of tens of thylakoid membranes.
Collapse
Affiliation(s)
- David Bína
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Miroslava Herbstová
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Zdenko Gardian
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - František Vácha
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radek Litvín
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| |
Collapse
|
7
|
Bína D, Gardian Z, Vácha F, Litvín R. Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study. PHOTOSYNTHESIS RESEARCH 2016; 128:93-102. [PMID: 26589322 DOI: 10.1007/s11120-015-0205-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.
Collapse
Affiliation(s)
- David Bína
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|