1
|
Huang H, Lin L, Bu F, Su Y, Zheng X, Chen Y. Reductive Stress Boosts the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes: The Neglected Side of the Intracellular Redox Spectrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15594-15606. [PMID: 36322896 DOI: 10.1021/acs.est.2c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) among bacteria is becoming a global challenge to the "One Health" concept. During conjugation, the donor/recipient usually encounter diverse stresses induced by the surrounding environment. Previous studies mainly focused on the effects of oxidative stress on plasmid conjugation, but ignored the potential contribution of reductive stress (RS), the other side of the intracellular redox spectrum. Herein, we demonstrated for the first time that RS induced by dithiothreitol could significantly boost the horizontal transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella Typhimurium, and Pseudomonas putida KT2440). Phenotypic and genotypic tests confirmed that RS upregulated genes encoding the transfer apparatus of plasmid RP4, which was attributed to the promoted consumption of intracellular glutamine in the donor rather than the widely reported SOS response. Moreover, RS was verified to benefit ATP supply by activating glycolysis (e.g., GAPDH) and the respiratory chain (e.g., appBC), triggering the deficiency of intracellular free Mg2+ by promoting its binding, and reducing membrane permeability by stimulating cardiolipin biosynthesis, all of which were beneficial to the functioning of transfer apparatus. Overall, our findings uncovered the neglected risks of RS in ARG spreading and updated the regulatory mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Bu
- Shanghai Electric Environmental Protection Group, Shanghai Electric Group Co. Ltd, Shanghai 200092, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
2
|
Vieira Lemos R, Tsujimura S, Ledezma P, Tokunou Y, Okamoto A, Freguia S. Extracellular electron transfer by Microcystis aeruginosa is solely driven by high pH. Bioelectrochemistry 2020; 137:107637. [PMID: 32898791 DOI: 10.1016/j.bioelechem.2020.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022]
Abstract
Extracellular electron transfer (EET) by the cyanobacterium Microcystis aeruginosa was investigated. Observations indicate that EET onto an electrode poised at + 0.6 vs. standard hydrogen electrode (SHE) is triggered by high pH, more evidently at pH levels above 9. Light intensity does not appear to affect electricity generation, indicating that this may not be a "biophotovoltaic" process. The generated current density was amplified with stepwise pH increases from approximately 5 mA m-2 at pH 7.8 to 30 mA m-2 at pH 10.5, for dense (0.4 mg mL-1 dry weight) Microcystis aeruginosa suspensions with dissolved CO2 and O2 approaching equilibrium with atmospheric concentrations. The upsurge in current density was more pronounced (from 5 mA m-2 at pH 7.8 to 40 mA m-2 at pH 10.2) in the absence of the cells' natural electron acceptors, dissolved CO2 and O2. However, the latter effect is more likely due to competition for electrons by oxygen than to reductive stress. EET in this species is therefore a light-independent process that is enhanced by increasing pH, with reasons that are still unknown, but either related to the involvement of protons in the last step of electron transfer, or to intracellular pH control.
Collapse
Affiliation(s)
- Rita Vieira Lemos
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Yoshihide Tokunou
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia.
| |
Collapse
|
3
|
Electrochemical Bacterial Enrichment from Natural Seawater and Its Implications in Biocorrosion of Stainless-Steel Electrodes. MATERIALS 2020; 13:ma13102327. [PMID: 32438636 PMCID: PMC7288148 DOI: 10.3390/ma13102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022]
Abstract
Microbial electrochemical technologies have revealed the opportunity of electrochemical enrichment for specific bacterial groups that are able to catalyze reactions of interest. However, there are unsolved challenges towards their application under aggressive environmental conditions, such as in the sea. This study demonstrates the impact of surface electrochemical potential on community composition and its corrosivity. Electrochemical bacterial enrichment was successfully carried out in natural seawater without nutrient amendments. Experiments were carried out for ten days of exposure in a closed-flow system over 316L stainless steel electrodes under three different poised potentials (−150 mV, +100 mV, and +310 mV vs. Ag/AgCl). Weight loss and atomic force microscopy showed a significant difference in corrosion when +310 mV (vs. Ag/AgCl) was applied in comparison to that produced under the other tested potentials (and an unpoised control). Bacterial community analysis conducted using 16S rRNA gene profiles showed that poised potentials are more positive as +310 mV (vs. Ag/AgCl) resulted in strong enrichment for Rhodobacteraceae and Sulfitobacter. Hence, even though significant enrichment of the known electrochemically active bacteria from the Rhodobacteraceae family was accomplished, the resultant bacterial community could accelerate pitting corrosion in 316 L stainless steel, thereby compromising the durability of the electrodes and the microbial electrochemical technologies.
Collapse
|
4
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Kornienko N, Zhang JZ, Sakimoto KK, Yang P, Reisner E. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. NATURE NANOTECHNOLOGY 2018; 13:890-899. [PMID: 30291349 DOI: 10.1038/s41565-018-0251-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/23/2023]
Abstract
Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. The progress and studies of these hybrid systems is the focus of this forward-looking perspective. In this Review, we discuss how enzymes have been interfaced with synthetic materials and employed for semi-artificial fuel production. In parallel, we examine how more complex living cellular systems can be recruited for in vivo fuel and chemical production in an approach where inorganic nanostructures are hybridized with photosynthetic and non-photosynthetic microorganisms. Side-by-side comparisons reveal strengths and limitations of enzyme- and microorganism-based hybrid systems, and how lessons extracted from studying enzyme hybrids can be applied to investigations of microorganism-hybrid devices. We conclude by putting semi-artificial photosynthesis in the context of its own ambitions and discuss how it can help address the grand challenges facing artificial systems for the efficient generation of solar fuels and chemicals.
Collapse
Affiliation(s)
- Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jenny Z Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kelsey K Sakimoto
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy NanoSciences Institute, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Rowden SJL, Bombelli P, Howe CJ. Biophotovoltaics: Design and Study of Bioelectrochemical Systems for Biotechnological Applications and Metabolic Investigation. Methods Mol Biol 2018; 1770:335-346. [PMID: 29978412 DOI: 10.1007/978-1-4939-7786-4_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biophotovoltaic methods rely on the fact that photosynthetic microorganisms, like many others, can export small amounts of electric current. For photosynthetic organisms, this current usually increases on illumination. This "exoelectrogenic" property may be of biotechnological interest, and may also provide useful experimental insights into the physiological status of the cell. We describe how to construct biophotovoltaic devices, and the kinds of measurements that are typically made.
Collapse
Affiliation(s)
- Stephen J L Rowden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
7
|
Photosynthetic Microbial Fuel Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:159-175. [PMID: 28070595 DOI: 10.1007/10_2016_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This chapter presents the current state of research on bioelectrochemical systems that include phototrophic organisms. First, we describe what is known of how phototrophs transfer electrons from internal metabolism to external substrates. This includes efforts to understand both the source of electrons and transfer pathways within cells. Second, we consider technological progress toward producing bio-photovoltaic devices with phototrophs. Efforts to improve these devices by changing the species included, the electrode surfaces, and chemical mediators are described. Finally, we consider future directions for this research field.
Collapse
|
8
|
Becker PM. Antireduction: an ancient strategy fit for future. Biosci Rep 2016; 36:e00367. [PMID: 27274089 PMCID: PMC4986409 DOI: 10.1042/bsr20160085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/16/2023] Open
Abstract
While antioxidants are on everyone's lips, antireductants are their much less-known counterparts. Following an antioxidant's definition, an antireductant prevents the chemical reduction of another compound by undergoing reduction itself. Antireductants have been traced back as far as the origin of life, which they facilitated by removal of atmospheric dihydrogen, H2 Moreover, as electron acceptors, antireductants equipped the first metabolic pathways, enabling lithoautotrophic microbial growth. When the Earth's atmosphere became more oxidizing, certain antireductants revealed their Janus-face by acting as antioxidants. Both capacities, united in one compound, were detected in primary as well as plant secondary metabolites. Substantiated by product identification, such antireductants comprise antiradicals (e.g. carotenoids) up to diminishers of ruminal methane emission (e.g. fumarate, catechin or resveratrol). Beyond these Janus-faced, multifunctional compounds, the spectrum of antireductants extends to pure electron-attractors (e.g. atmospheric triplet oxygen, O2, for plant root and gut protection). Current and prospective fields of antireductant application range from health promotion over industrial production to environmental sustainability.
Collapse
Affiliation(s)
- Petra Maria Becker
- IEZ-Institute for Ethnobotany and Zoopharmacognosy, Rijksstraatweg 158, 6573 DG Beek-Ubbergen, The Netherlands
| |
Collapse
|