1
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
2
|
Aires-Fernandes M, Botelho Costa R, Rochetti do Amaral S, Mussagy CU, Santos-Ebinuma VC, Primo FL. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice. Molecules 2022; 27:molecules27206848. [PMID: 36296441 PMCID: PMC9609562 DOI: 10.3390/molecules27206848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that has been applied in studies for the treatment of various diseases. In this context, PDT has been suggested as a new therapy or adjuvant therapy to traditional cancer therapy. The mode of action of PDT consists of the generation of singlet oxygen (¹O2) and reactive oxygen species (ROS) through the administration of a compound called photosensitizer (PS), a light source, and molecular oxygen (3O2). This combination generates controlled photochemical reactions (photodynamic mechanisms) that produce ROS, such as singlet oxygen (¹O2), which can induce apoptosis and/or cell death induced by necrosis, degeneration of the tumor vasculature, stimulation of the antitumor immune response, and induction of inflammatory reactions in the illuminated region. However, the traditional compounds used in PDT limit its application. In this context, compounds of biotechnological origin with photosensitizing activity in association with nanotechnology are being used in PDT, aiming at its application in several types of cancer but with less toxicity toward neighboring tissues and better absorption of light for more aggressive types of cancer. In this review, we present studies involving innovatively developed PS that aimed to improve the efficiency of PDT in cancer treatment. Specifically, we focused on the clinical translation and application of PS of natural origin on cancer.
Collapse
Affiliation(s)
- Mariza Aires-Fernandes
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Ramon Botelho Costa
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Stéphanie Rochetti do Amaral
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Valéria C. Santos-Ebinuma
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-4661
| |
Collapse
|
3
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
5
|
Jin X, Zhang Y, Zhang R, Nguyen KU, Lindsey JS, Miller ES. Identification of Putative Biosynthetic Gene Clusters for Tolyporphins in Multiple Filamentous Cyanobacteria. Life (Basel) 2021; 11:758. [PMID: 34440502 PMCID: PMC8401325 DOI: 10.3390/life11080758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023] Open
Abstract
Tolyporphins A-R are unusual tetrapyrrole macrocycles produced by the non-axenic filamentous cyanobacterium HT-58-2. A putative biosynthetic gene cluster for biosynthesis of tolyporphins (here termed BGC-1) was previously identified in the genome of HT-58-2. Here, homology searching of BGC-1 in HT-58-2 led to identification of similar BGCs in seven other filamentous cyanobacteria, including strains Nostoc sp. 106C, Nostoc sp. RF31YmG, Nostoc sp. FACHB-892, Brasilonema octagenarum UFV-OR1, Brasilonema octagenarum UFV-E1, Brasilonema sennae CENA114 and Oculatella sp. LEGE 06141, suggesting their potential for tolyporphins production. A similar gene cluster (BGC-2) also was identified unexpectedly in HT-58-2. Tolyporphins BGCs were not identified in unicellular cyanobacteria. Phylogenetic analysis based on 16S rRNA and a common component of the BGCs, TolD, points to a close evolutionary history between each strain and their respective tolyporphins BGC. Though identified with putative tolyporphins BGCs, examination of pigments extracted from three cyanobacteria has not revealed the presence of tolyporphins. Overall, the identification of BGCs and potential producers of tolyporphins presents a collection of candidate cyanobacteria for genetic and biochemical analysis pertaining to these unusual tetrapyrrole macrocycles.
Collapse
Affiliation(s)
- Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7615, USA
| |
Collapse
|
6
|
Nguyen KU, Zhang R, Taniguchi M, Lindsey JS. Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts. Photochem Photobiol 2021; 97:1507-1515. [PMID: 34152600 DOI: 10.1111/php.13474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
Tolyporphins are distinctive tetrapyrrole natural products found singularly in a filamentous cyanobacterial-microbial holobiont (termed HT-58-2) from Micronesia. The absorption and fluorescence features of tolyporphins resemble those of chlorophyll a, complicating direct analysis of culture samples. Treatment of the crude (unfractionated) organic extract (CH2 Cl2 /2-propanol, 1:1) of HT-58-2 cultures with NaBH4 in methanol causes reduction of the peripheral ketone auxochromes, whereupon tolyporphins (predominantly 7,17-dioxobacteriochlorins) exhibit a bathochromic shift (λabs ~ 676 → ~ 700 nm) and chlorophyll a (a 131 -oxochlorin) exhibits a hypsochromic shift (λabs 665 → 634 nm). Fluorescence excitation spectroscopy (at 368 and 491 nm with λem 710 nm) enabled detection of reduced tolyporphins amidst abundant reduced chlorophyll a (1:19 ratio), a detection sensitivity >5 times that without reduction. The resulting assay combines simple sample preparation from non-axenic cultures at microscale quantities (2 mL, 2 μm), absence of any fractionation procedures, and fluorescence detection. Tolyporphins were readily detected in cultures of HT-58-2 at reasonable growth periods in the absence of environmental stressors, which was not possible previously.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC
| | | | | |
Collapse
|
7
|
Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2. Life (Basel) 2021; 11:life11040356. [PMID: 33919559 PMCID: PMC8073705 DOI: 10.3390/life11040356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols.
Collapse
|
8
|
Gurr JR, O’Donnell TJ, Luo Y, Yoshida WY, Hall ML, Mayer AM, Sun R, Williams PG. 6-Deoxy- and 11-Hydroxytolypodiols: Meroterpenoids from the Cyanobacterium HT-58-2. JOURNAL OF NATURAL PRODUCTS 2020; 83:1691-1695. [PMID: 32282204 PMCID: PMC7246299 DOI: 10.1021/acs.jnatprod.9b00844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical investigation of cyanobacterial strain HT-58-2, which most closely aligns with the genus Brasilomena, has led to the isolation of two compounds related to tolypodiol. The structures and absolute configuration of 6-deoxytolypodiol (1) and 11-hydroxytolypodiol (2) were elucidated by spectroscopic and spectrometric analysis. While tolypodiol previously showed anti-inflammatory activity in a mouse ear edema assay, only 2 reduced in vitro thromboxane B2 and superoxide anion (O2-) generation from Escherichia coli lipopolysaccharide-activated rat neonatal microglia to any appreciable degree.
Collapse
Affiliation(s)
- Joshua R. Gurr
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| | - Timothy J. O’Donnell
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| | - Wesley Y. Yoshida
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| | - Mary L. Hall
- Department of Pharmacology, College of Graduate Studies Medicine, Midwestern University, 555 31 Street, Downers Grove, IL 60515
| | - Alejandro M.S. Mayer
- Department of Pharmacology, College of Graduate Studies Medicine, Midwestern University, 555 31 Street, Downers Grove, IL 60515
| | - Rui Sun
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| | - Philip G. Williams
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822
| |
Collapse
|
9
|
Schnable D, Chaudhri N, Li R, Zeller M, Brückner C. Evaluation of Octaethyl-7,17-dioxobacteriochlorin as a Ligand for Transition Metals. Inorg Chem 2020; 59:2870-2880. [DOI: 10.1021/acs.inorgchem.9b03231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David Schnable
- Department of Chemistry, Unit 3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Nivedita Chaudhri
- Department of Chemistry, Unit 3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Ruoshi Li
- Department of Chemistry, Unit 3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 101 Wetherill Hall, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Christian Brückner
- Department of Chemistry, Unit 3060, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
10
|
Guberman-Pfeffer MJ, Lalisse RF, Hewage N, Brückner C, Gascón JA. Origins of the Electronic Modulations of Bacterio- and Isobacteriodilactone Regioisomers. J Phys Chem A 2019; 123:7470-7485. [PMID: 31361130 DOI: 10.1021/acs.jpca.9b05656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in the utilization of porphyrinoids for photomedicine, catalysis, and artificial photosynthesis require a fundamental understanding of the relationships between their molecular connectivity and resulting electronic structures. Herein, we analyze how the replacement of two pyrrolic Cβ═Cβ bonds of a porphyrin by two lactone (O═C-O) moieties modulates the ground-state thermodynamic stability and electronic structure of the resulting five possible pyrrole-modified porphyrin isomers. We made these determinations based on density functional theory (DFT) and time-dependent DFT computations of the optical spectra of all regioisomers. We also analyzed the computed magnetically induced currents of their aromatic π-systems. All regioisomers adopt the tautomeric state that maximizes aromaticity, whether or not transannular steric strains are incurred. In all isomers, the O═Cβ-Oβ bonds were found to support a macrocycle diatropic ring current. We attributed this to the delocalization of nonbonding electrons from the ring oxa- and oxo-atoms into the macrocycle. As a consequence of this delocalization, the dilactone regioisomers are as-or even more-aromatic than their hydroporphyrin congeners. The electronic structures follow different trends for the bacteriochlorin- and isobacteriochlorin-type isomers. The presence of either oxo- or oxa-oxygens conjugated with the macrocyclic π-system was found to be the minimal structural requirement for the regioisomers to exhibit distinct electronic properties. Our computational methods and mechanistic insights provide a basis for the systematic exploration of the physicochemical properties of porphyrinoids as a function of the number, relative orientation, and degree of macrocycle-π-conjugation of β-substituents, in general, and for dilactone-based porphyrinic chromophores, in particular.
Collapse
Affiliation(s)
- Matthew J Guberman-Pfeffer
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Remy F Lalisse
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Nisansala Hewage
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Christian Brückner
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - José A Gascón
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| |
Collapse
|