1
|
Kato S, Fujisawa S, Adachi Y, Bandai M, Mori Y, Mori S, Shirai T, Hayashi T. NHC-Mediated Radical Acylation Catalyzed by Thiamine- and Flavin-Dependent Enzymes. J Am Chem Soc 2025; 147:14837-14844. [PMID: 40232253 PMCID: PMC12046553 DOI: 10.1021/jacs.5c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Cross-coupling reactions between short-lifetime radicals are challenging reactions in organic chemistry. Here, we report the development of an N-heterocyclic carbene (NHC)-mediated radical coupling reaction based on the catalytic machinery of thiamine- and flavin-dependent enzymes. Through a series of enzyme screenings, we found that acetolactate synthase from Thermobispora bispora (TbALS) and its engineered variants exhibit promising catalytic activity toward abiotic radical acylation reactions of α-bromo carbonyl compounds. Notably, the TbALS variant has higher catalytic activity for small nonaromatic substrates despite forming less stable radical intermediates. Furthermore, the catalytic system of TbALS can be applied to photocatalytic reactions utilizing the photoredox properties of FAD. Nonbenzylic alkyl radicals generated from N-acyloxyphthalimides are efficiently converted into the corresponding dialkyl ketones under irradiation of a blue LED. These findings highlight the utility of thiamine- and flavin-dependent enzymes for achieving selective cross-coupling reactions of short-lifetime radicals.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Shuto Fujisawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yuto Adachi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Mitsuhiro Bandai
- Institute
of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan
| | - Yutaro Mori
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Seiji Mori
- Institute
of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan
- Research
and Education Center for Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Tomokazu Shirai
- RIKEN
Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
3
|
Ng TL, Silver PA. Sustainable B 12-Dependent Dehalogenation of Organohalides in E. coli. ACS Chem Biol 2024; 19:380-391. [PMID: 38254247 DOI: 10.1021/acschembio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial bioremediation can provide an environmentally friendly and scalable solution to treat contaminated soil and water. However, microbes have yet to optimize pathways for degrading persistent anthropogenic pollutants, in particular organohalides. In this work, we first expand our repertoire of enzymes useful for bioremediation. By screening a panel of cobalamin (B12)-dependent reductive dehalogenases, we identified previously unreported enzymes that dechlorinate perchloroethene and regioselectively deiodinate the thyroidal disruptor 2,4,6-triiodophenol. One deiodinase, encoded by the animal-associated anaerobe Clostridioides difficile, was demonstrated to dehalogenate the naturally occurring metabolites L-halotyrosines. In cells, several combinations of ferredoxin oxidoreductase and flavodoxin extract and transfer low-potential electrons from pyruvate to drive reductive dehalogenation without artificial reductants and mediators. This work provides new insights into a relatively understudied family of B12-dependent enzymes and sets the stage for engineering synthetic pathways for degrading unnatural small molecule pollutants.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. A Redox-Regulated, Heterodimeric NADH:cinnamate Reductase in Vibrio ruber. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:241-256. [PMID: 38622093 DOI: 10.1134/s0006297924020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024]
Abstract
Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
5
|
Abstract
Bacteria coping with oxygen deficiency use alternative terminal electron acceptors for NADH regeneration, particularly fumarate. Fumarate is reduced by the FAD_binding_2 domain of cytoplasmic fumarate reductase in many bacteria. The variability of the primary structure of this domain in homologous proteins suggests the existence of reducing activities with different specificities. Here, we produced and characterized one such protein encoded in the Vibrio harveyi genome (GenBank ID: AIV07243) and found it to be a specific NADH:acrylate oxidoreductase (ARD). This previously unknown enzyme is formed by the OYE-like, FMN_bind, and FAD_binding_2 domains and contains covalently bound flavin mononucleotide (FMN) and noncovalently bound flavin adenine dinucleotide (FAD) and FMN in a ratio of 1:1:1. The covalently bound FMN is absolutely required for activity and is attached by the specific flavin transferase, ApbE, to the FMN_bind domain. Quantitative reverse transcription PCR (RT-qPCR) and activity measurements indicated dramatic stimulation of ARD biosynthesis by acrylate in the V. harveyi cells grown aerobically. In contrast, the ard gene expression in the cells grown anaerobically without acrylate was higher than that in aerobic cultures and increased only 2-fold in the presence of acrylate. These findings suggest that the principal role of ARD in Vibrio is energy-saving detoxification of acrylate coming from the environment. IMPORTANCE The benefits of the massive genomic information accumulated in recent years for biological sciences have been limited by the lack of data on the function of most gene products. Approximately half of the known prokaryotic genes are annotated as "proteins with unknown functions," and many other genes are annotated incorrectly. Thus, the functional and structural characterization of the products of such genes, including identification of all existing enzymatic activities, is a pressing issue in modern biochemistry. In this work, we have shown that the product of the V. harveyi ard gene exhibits a yet-undescribed NADH:acrylate oxidoreductase activity. This activity may allow acrylate detoxification and its use as a terminal electron acceptor in anaerobic or substrate in aerobic respiration of marine and other bacteria.
Collapse
|
6
|
Bertsova YV, Serebryakova MV, Baykov AA, Bogachev AV. The flavin transferase ApbE flavinylates the ferredoxin:NAD+-oxidoreductase Rnf required for N2 fixation in Azotobacter vinelandii. FEMS Microbiol Lett 2021; 368:6381689. [PMID: 34610116 DOI: 10.1093/femsle/fnab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin), acting as an electron donor for nitrogenase. However, the relative contribution of Rnf to nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defects under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of a fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between flavin mononucleotide and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
7
|
Bertsova YV, Oleynikov IP, Bogachev AV. A new water-soluble bacterial NADH: fumarate oxidoreductase. FEMS Microbiol Lett 2021; 367:5941483. [PMID: 33107907 DOI: 10.1093/femsle/fnaa175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic fumarate reductase of Klebsiella pneumoniae (FRD) is a monomeric protein which contains three prosthetic groups: noncovalently bound FMN and FAD plus a covalently bound FMN. In the present work, NADH is revealed to be an inherent electron donor for this enzyme. We found that the fumarate reductase activity of FRD significantly exceeds its NADH dehydrogenase activity. During the catalysis of NADH:fumarate oxidoreductase reaction, FRD turnover is limited by a very low rate (∼10/s) of electron transfer between the noncovalently and covalently bound FMN moieties. Induction of FRD synthesis in K. pneumoniae cells was observed only under anaerobic conditions in the presence of fumarate or malate. Enzymes with the FRD-like domain architecture are widely distributed among various bacteria and apparently comprise a new type of water-soluble NADH:fumarate oxidoreductases.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Ilya P Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| |
Collapse
|
8
|
Rubredoxin from the green sulfur bacterium Chlorobaculum tepidum donates a redox equivalent to the flavodiiron protein in an NAD(P)H dependent manner via ferredoxin-NAD(P) + oxidoreductase. Arch Microbiol 2020; 203:799-808. [PMID: 33051772 DOI: 10.1007/s00203-020-02079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The green sulfur bacterium, Chlorobaculum tepidum, is an anaerobic photoautotroph that performs anoxygenic photosynthesis. Although genes encoding rubredoxin (Rd) and a putative flavodiiron protein (FDP) were reported in the genome, a gene encoding putative NADH-Rd oxidoreductase is not identified. In this work, we expressed and purified the recombinant Rd and FDP and confirmed dioxygen reductase activity in the presence of ferredoxin-NAD(P)+ oxidoreductase (FNR). FNR from C. tepidum and Bacillus subtilis catalyzed the reduction of Rd at rates comparable to those reported for NADH-Rd oxidoreductases. Also, we observed substrate inhibition at high concentrations of NADPH similar to that observed with ferredoxins. In the presence of NADPH, B. subtilis FNR and Rd, FDP promoted dioxygen reduction at rates comparable to those reported for other bacterial FDPs. Taken together, our results suggest that Rd and FDP participate in the reduction of dioxygen in C. tepidum and that FNR can promote the reduction of Rd in this bacterium.
Collapse
|
9
|
Bertsova YV, Mamedov MD, Bogachev AV. Na+-Translocating Ferredoxin:NAD+ Oxidoreductase Is a Component of Photosynthetic Electron Transport Chain in Green Sulfur Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:1403-1410. [PMID: 31760926 DOI: 10.1134/s0006297919110142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genomes of photoautotrophic organisms containing type I photosynthetic reaction center were searched for the rnf genes encoding Na+-translocating ferredoxin:NAD+ oxidoreductase (RNF). These genes were absent in heliobacteria, cyanobacteria, algae, and plants; however, genomes of many green sulfur bacteria (especially marine ones) were found to contain the full rnf operon. Analysis of RNA isolated from the marine green sulfur bacterium Chlorobium phaeovibrioides revealed a high level of rnf expression. It was found that the activity of Na+-dependent flavodoxin:NAD+ oxidoreductase detected in the membrane fraction of Chl. phaeovibrioides was absent in the membrane fraction of the freshwater green sulfur bacterium Chlorobaculum limnaeum, which is closely related to Chl. phaeovibrioides but whose genome lacks the rnf genes. Illumination of the membrane fraction of Chl. phaeovibrioides but not of Cba. limnaeum resulted in the light-induced NAD+ reduction. Based on the obtained data, we concluded that in some green sulfur bacteria, RNF may be involved in the NADH formation that should increase the efficiency of light energy conservation in these microorganisms and can serve as the first example of the use of Na+ energetics in photosynthetic electron transport chains.
Collapse
Affiliation(s)
- Y V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - A V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|