1
|
Prado T, Degrave WMS, Duarte GF. Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J Fungi (Basel) 2025; 11:198. [PMID: 40137236 PMCID: PMC11942898 DOI: 10.3390/jof11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 03/27/2025] Open
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Gabriela Frois Duarte
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
- Federal University of Rio de Janeiro (UFRJ), Av. Pedro Calmon, 550, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
2
|
Xie RR, Wu S, Huang WL, Luo Y, Lin J, Cheng Y, Lu J, Yu W, Chen S, Li W, Chen LS. Assessment of cold resistance in tobacco varieties using JIP-test parameters and seedling growth. PHYSIOLOGIA PLANTARUM 2025; 177:e70078. [PMID: 39868639 DOI: 10.1111/ppl.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment. Their cold resistance was assessed using the cold-resistant coefficient, derived from the relative growth rate of shoots, damage scores, and JIP-test parameters. The results showed that total electron carriers per reaction center (Sm) and relative variable fluorescence at the I-step (VI) were better indicators of cold resistance than maximum quantum yield of photochemistry at t = 0 (Fv/Fm), which was widely used to assess plant cold resistance. Next, the study examined the effects of CS and subsequent recovery on OJIP transients, JIP-test parameters, and seedling growth in two highly resistant (HR) and two highly sensitive (HS) varieties to confirm the reliability of the assessment methods. The results indicated that HR varieties experienced less photoinhibitory damage to photosystem II, exhibited lower growth inhibition during CS, and showed better recovery during the recovery period compared to HS varieties. These findings suggested that the JIP-test parameters could serve as a reliable tool for assessing tobacco cold resistance and aid in selecting varieties with enhanced resilience to CS.
Collapse
Affiliation(s)
- Rong-Rong Xie
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaxin Luo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wen Yu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Filacek A, Zivcak M, Barboricova M, Kovar M, Halabuk A, Gerhatova K, Yang X, Hauptvogel P, Brestic M. Application of leaf multispectral analyzer in comparison to hyperspectral device to assess the diversity of spectral reflectance indices in wheat genotypes. Open Life Sci 2024; 19:20220989. [PMID: 39588113 PMCID: PMC11588014 DOI: 10.1515/biol-2022-0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024] Open
Abstract
Multispectral devices have a huge potential to be utilized in biological, ecological, and agricultural studies, providing valuable information on plant structure and chemical composition. The aim of the study was to assess the reliability and sensitivity of the affordable leaf spectrometer PolyPen (PP) in comparison with the highly sensitive analytical device FieldSpec-4. Measurements at the leaf level were realized on a collection of 24 diverse field-grown wheat (Triticum sp. L.) genotypes in several growth phases during the regular growing season, focusing on whole spectral curves and a set of 41 spectral reflectance indices. As expected, the sensitive analytical device showed a higher capacity to capture genotypic variability and the ability to distinguish seasonal changes compared to a low-cost multispectral device. Nevertheless, the analysis of the data provided by low-cost sensors provided a group of parameters with good sensitivity, including reasonable correlations between the records of the two devices (r > 0.80). Based on the large obtained datasets, we can conclude that the application of a low-cost PP leaf spectrometer in plant and crop studies can be efficient, but the selection of parameters is crucial. Thus, the present study provides valuable information for users of affordable leaf spectrometers in fundamental and applied plant science.
Collapse
Affiliation(s)
- Andrej Filacek
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Maria Barboricova
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Kovar
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99, Bratislava, Slovak Republic
| | - Katarina Gerhatova
- Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99, Bratislava, Slovak Republic
| | - Xinghong Yang
- College of Life Science, National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Pavol Hauptvogel
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 68, Piešťany, Slovak Republic
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
- College of Life Science, National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
4
|
Boccato E, Petruzzellis F, Bordenave CD, Nardini A, Tretiach M, Mayr S, Candotto Carniel F. The sound of lichens: ultrasonic acoustic emissions during desiccation question cavitation events in the hyphae. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6579-6592. [PMID: 39046305 DOI: 10.1093/jxb/erae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues. Explosive cavitation events in the hyphae might cause water movements towards the photobionts. This hypothesis was tested in two foliose lichens by measurements of ultrasonic acoustic emissions (UAEs), a method commonly used in vascular plants but never in lichens, and by measurements of PSII efficiency, water potential, and RWC. Thallus structural changes were characterized by low-temperature scanning electron microscopy. The thalli were silent between 380% and 30% RWCs, when explosive cavitation events should cause movements of liquid water. Nevertheless, the thalli emitted UAEs at ~5% RWC. Accordingly, the medullary hyphae were partially shrunken at ~15% RWC, whereas they were completely shrunken at <5% RWC. These results do not support the hypothesis of hyphal cavitation and suggest that the UAEs originate from structural changes at hyphal level. The shrinking of hyphae is proposed as an adaptation to avoid cell damage at very low RWCs.
Collapse
Affiliation(s)
- Enrico Boccato
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - César Daniel Bordenave
- Instituto 'Cavanilles' de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Fac. CC. Biológicas, Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| |
Collapse
|
5
|
Andrzejowska A, Hájek J, Puhovkin A, Harańczyk H, Barták M. Freezing temperature effects on photosystem II in Antarctic lichens evaluated by chlorophyll fluorescence. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154192. [PMID: 38382176 DOI: 10.1016/j.jplph.2024.154192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
This study explores and compares the limits for photosynthesis in subzero temperatures of six Antarctic lichens: Sphaerophorus globosus, Caloplaca regalis, Umbilicaria antarctica, Pseudephebe minuscula, Parmelia saxatilis and Lecania brialmontii combining linear cooling and chlorophyll fluorescence methods. The results revealed triphasic S-curves in the temperature response of the maximum quantum yield (FV/FM) and effective quantum yield of photosystem II (ΦPSII) for all species. All investigated species showed a high level of cryoresistance with critical temperatures (Tc) below -20 °C. However, record low Tc temperatures have been discovered for L. brialmotii (-54 °C for FV/FM and -40 °C for ΦPSII) and C. regalis (-52 °C for FV/FM and -38 °C for ΦPSII). Additionally, the yield differentials (FV/FM - ΦPSII) in functions of temperature revealed one or two peaks, with the larger one occurring for temperatures below -20 °C for the above-mentioned species. Finally, Kautsky kinetics were measured and compared at different temperatures (20 °C, 10 °C, 0 °C and -10 °C and then -10 °C after 1 h of incubation). This research serves as a foundation for further developing investigations into the biophysical mechanisms by which photosynthesis is carried out at subzero temperatures.
Collapse
Affiliation(s)
- Aleksandra Andrzejowska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Cracow, Łojasiewicza 11, Krakow, 30-348, Poland; M. Smoluchowski Institute of Physics, Jagiellonian University in Cracow, Łojasiewicza 11, Krakow, 30-348, Poland.
| | - Josef Hájek
- Masaryk University, Faculty of Science, Department of Experimental Biology, Laboratory of Photosynthetic Processes, Kamenice 5, 625 00, Brno, Czech Republic; Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management (FFWT), Zemědělská 3, 613 00, Brno, Černá Pole, Czech Republic
| | - Anton Puhovkin
- Masaryk University, Faculty of Science, Department of Experimental Biology, Laboratory of Photosynthetic Processes, Kamenice 5, 625 00, Brno, Czech Republic; National Antarctic Scientific Centre, Ministry of Education and Science of Ukraine, Taras Shevchenko Blvd. 16, 01601, Kyiv, Ukraine; Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavska, Kharkiv, 61016, Ukraine
| | - Hubert Harańczyk
- M. Smoluchowski Institute of Physics, Jagiellonian University in Cracow, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Miloš Barták
- Masaryk University, Faculty of Science, Department of Experimental Biology, Laboratory of Photosynthetic Processes, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
6
|
Osyczka P, Kościelniak R, Stanek M. Old-growth forest versus generalist lichens: Sensitivity to prolonged desiccation stress and photosynthesis reactivation rate upon rehydration. Mycologia 2024; 116:31-43. [PMID: 38039398 DOI: 10.1080/00275514.2023.2275460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Most epiphytic lichens demonstrate high specificity to a habitat type, and sensitive hygrophilous species usually find shelter only in close-to-natural forest complexes. Some of them are considered as old-growth forest and/or long ecological continuity indicators. To evaluate general links between the narrow ecological range and physiological traits, two distinct sets of model lichens, i.e., old-growth forest (Cetrelia cetrarioides (Duby) W.L. Culb. & C.F. Culb., Lobaria pulmonaria (L.) Hoffm., Menegazzia terebrata (Hoffm.) A. Massal.), and generalist (Flavoparmelia caperata (L.) Hale, Hypogymnia physodes (L.) Nyl., Parmelia sulcata Taylor) ones, were examined in terms of sensitivity to long-term desiccation stress (1-, 2-, and 3-month) and photosynthesis activation rate upon rehydration. Desiccation tolerance and response rate to rehydration are specific to a given ecological set of lichens rather than to a particular species. Noticeable delayed and prompt recovery of high photosynthetic activity of photosystem II (PSII) characterize these sets, respectively. At the same time, although a decrease in the potential quantum yield of PSII in lichen thalli with a relative water content (RWC) at the level of 25% was observed, the efficiency remained at a very high level for all species, regardless of habitat preferences. Among the examined lichens, the fluorescence emission parameters for F. caperata were the fastest toward equilibrium upon rehydration, both after a shorter and a longer period of desiccation stress. In contrast to generalist lichens, retrieving of photosynthesis after 3-month desiccation failed in old-growth forest lichens. In the long term, prolonged rainless periods and unfavorable water balance in the environment predicted in the future may have a severely limiting effect on hygrophilous lichens during growing season (also in the sense of species associations) and, at the same time, promote the development of generalists.
Collapse
Affiliation(s)
- Piotr Osyczka
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, Kraków 30-387, Poland
| | - Robert Kościelniak
- Institute of Botany, Pedagogical University of Krakow, Podchorążych 2, Kraków 30-084, Poland
| | - Małgorzata Stanek
- Laboratory of Ecochemistry and Environmental Engineering, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków 31-512, Poland
| |
Collapse
|
7
|
Chowaniec K, Żukowska-Trebunia A, Rola K. Combined effect of acute salt and nitrogen stress on the physiology of lichen symbiotic partners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28192-28205. [PMID: 36399301 PMCID: PMC9995433 DOI: 10.1007/s11356-022-24115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution and excessive salinity are commonly regarded as one of the major environmental concerns in recent decades in many urban environments. Although in urban areas lichens are exposed to both salt and nitrogen stress, no studies have been conducted to date on the simultaneous impact and interaction of these factors on lichen physiology. The aim was to determine the effect of various combinations of NaCl and NH4NO3 doses on the physiology of epigeic lichen Cladonia rei. We also aimed to compare the response of lichens collected from polluted and unpolluted sites to verify whether lichens exposed to different levels of environmental stress in their native environment will react differently. The combined salt-nitrogen treatment caused significant disturbances in the integrity of cell membranes and chlorophyll fluorescence parameters. The most detrimental effect concerned the loss of cell membrane integrity, which suggests that this parameter can serve as a relevant indicator of acute salt-nitrogen stress incidents. Salt stress decreased the photosynthetic efficiency 1 h after exposure, but after 72 h, the FV/FM returned to the level characteristic of healthy lichens in experimental groups without and with small doses of ammonium nitrate. In contrast, recovery was not possible in combination with high nitrogen doses. This indicates that exposure to short-term salt stress in a nitrogen-poor environment only causes a temporary reduction in photosynthetic efficiency, but in urban eutrophic environments may have more serious consequences. The weakened physiological condition of the mycobiont manifested by an increased level of cell membrane damage and a persistent decrease in the photosynthetic efficiency of the photobiont in lichens growing along the roads may indicate an excess of nitrogen in the environment, enhanced by the effect of salt. Lichens collected from a heavy-metal-polluted habitat responded more strongly than those from an unpolluted habitat suggesting that in lichens previously affected by certain harmful factors, exposure to another stress factor may lead to greater disturbances. This is of particular importance for lichens inhabiting the vicinity of roads, since they are also under the influence of other pollutants emitted by road traffic.
Collapse
Affiliation(s)
- Karolina Chowaniec
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Anna Żukowska-Trebunia
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| |
Collapse
|
8
|
Wei D, Zhang T, Wang B, Zhang H, Ma M, Li S, Chen THH, Brestic M, Liu Y, Yang X. Glycinebetaine mitigates tomato chilling stress by maintaining high-cyclic electron flow rate of photosystem I and stability of photosystem II. PLANT CELL REPORTS 2022; 41:1087-1101. [PMID: 35150305 DOI: 10.1007/s00299-022-02839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Glycinebetaine alleviates chilling stress by protecting photosystems I and II in BADH-transgenic and GB-treated tomato plants, which can be an effective strategy for improving crop chilling tolerance. Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world, but is highly susceptible to chilling stress and does not naturally accumulate glycinebetaine (GB), one of the most effective stress protectants. The protective mechanisms of GB on photosystem I (PSI) and photosystem II (PSII) against chilling stress, however, remain poorly understood. Here, we address this problem through exogenous GB application and generation of transgenic tomatoes (Moneymaker) with a gene encoding betaine aldehyde dehydrogenase (BADH), which is the key enzyme in the synthesis of GB, from spinach. Our results demonstrated that GB can protect chloroplast ultramicrostructure, alleviate PSII photoinhibition and maintain PSII stability under chilling stress. More importantly, GB increased the electron transfer between QA and QB and the redox potential of QB and maintained a high rate of cyclic electron flow around PSI, contributing to reduced production of reactive oxygen species, thereby mitigating PSI photodamage under chilling stress. Our results highlight the novel roles of GB in enhancing chilling tolerance via the protection of PSI and PSII in BADH transgenic and GB-treated tomato plants under chilling stress. Thus, introducing GB-biosynthetic pathway into tomato and exogenous GB application are effective strategies for improving chilling tolerance.
Collapse
Affiliation(s)
- Dandan Wei
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
- Xinzhou Teachers University, Xinzhou, 034000, Shanxi, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bingquan Wang
- Maize Research Institution, Shanxi Academy of Agricultural Sciences, XinzhouShanxi, 034000, China
| | - Huiling Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingyang Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shufen Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, ALS 4017, Corvallis, OR, 97331, USA
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
9
|
Koutra E, Chondrogiannis C, Grammatikopoulos G. Variability of the photosynthetic machinery tolerance when imposed to rapidly or slowly imposed dehydration in native Mediterranean plants. PHOTOSYNTHETICA 2022; 60:88-101. [PMID: 39649007 PMCID: PMC11559474 DOI: 10.32615/ps.2022.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 12/10/2024]
Abstract
Dehydration affects the photosynthetic apparatus. The impact of dehydration on photosynthesis was assessed in twelve Mediterranean species representing different growth forms. Rapid and slow dehydration experiments were conducted to (1) compare the impact of water stress among species and growth forms, (2) rank species according to their drought tolerance. Rapid dehydration reduced the electron transport up to PSI, the reduction being linearly related to leaf relative water content (RWC), except for the deciduous species. Specific energy fluxes per reaction center and maximum photochemical activity of PSII remained relatively stable until 10-30% RWC. The modification pattern of the studied parameters was similar for all the growth forms. Slow rehydration increased specific energy fluxes and decreased quantum yields. The dehydration pattern was similar among growth forms, while the recovery pattern was species-specific. Drought tolerance ranking through drought factor index was relatively modified with the integrated biomarker response method.
Collapse
Affiliation(s)
- E. Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Patras, Greece
| | - C. Chondrogiannis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - G. Grammatikopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
Chowaniec K, Rola K. Evaluation of the importance of ionic and osmotic components of salt stress on the photosynthetic efficiency of epiphytic lichens. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:107-121. [PMID: 35210716 PMCID: PMC8847468 DOI: 10.1007/s12298-022-01134-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 05/25/2023]
Abstract
UNLABELLED Salt stress can significantly disrupt the functioning of lichens which are self-sufficient symbiotic organisms inhabiting various severe environments. The aim was to test the effect of salt and sucrose on the photosynthetic efficiency of two selected epiphytic lichens inhabiting the interior of the land. Firstly, we compared the effect of salt and sucrose solutions of different concentrations. Secondly, the effect of salt and sucrose solutions with identical osmotic pressures was compared. The results showed that short-term salt stress leads to a significant reduction of F V /F M , greater changes in chlorophyll fluorescence parameters and OJIP transients compared to the osmotic effects induced by sucrose. This proved that the negative impact of salt stress is associated primarily with ionic effects. The most symptomatic effect of the ionic stress was a significant reduction of the utilisation of trapped energy in electron transport and thereby down-regulation of electron transfer. Since lichens are resistant to a temporary lack of water, ionic stress could have more serious consequences than osmotic stress itself. Hypogymnia physodes was more sensitive to salt stress than Pseudevernia furfuracea, but the reduction of photosynthetic efficiency was not permanent since after 24 h F V /F M returned to the level characteristic for healthy lichens. Nevertheless, repeated exposure to salt may reduce the vitality of lichens growing along communication routes sprinkled with salt in the winter season. Finally, the changes in certain JIP-test parameters were stronger than F V /F M , thus they could be better indicators of salt stress in lichens. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01134-2.
Collapse
Affiliation(s)
- Karolina Chowaniec
- Faculty of Biology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Kaja Rola
- Faculty of Biology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Palharini KMZ, Vitorino LC, Bessa LA, de Carvalho Vasconcelos Filho S, Silva FG. Parmotrema tinctorum as an indicator of edge effect and air quality in forested areas bordered by intensive agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68997-69011. [PMID: 34286433 DOI: 10.1007/s11356-021-15411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Pollutants inhibit thallus growth and development or alter the metabolism and associated anatomical and morphophysiological characteristics of lichens. Since agricultural matrices can act as sources of pollution by dispersing agrochemicals to vegetation fragments, this study tested the hypothesis that Parmotrema tinctorum can serve as the indicator of edge effect in such fragments. In other words, we assumed the impact of pollutant accumulation to be greater at the vegetation edges and explored the utility of this lichen as a bioindicator of pollutants dispersed from agricultural matrices. Differences in the anatomical layers of P. tinctorum thalli sampled from the edge and center of four vegetation fragments (CER, SSF, SSC, and ENP) were evaluated, and the effects of agricultural matrices on macro- and micronutrient levels, heavy metal levels, and photosynthetic pigment content were analyzed. Anatomical layers were thicker in P. tinctorum thalli from the edges of SSC and ENP, indicating the need for photobiont protection at these sites. Edge effect was observed on Al accumulation in the thallus, indicating dispersion of this metal from agricultural matrices and its greater impact in the edge populations. Edge effect was also evident on photosynthetic pigment content, macro- and micronutrient levels, and heavy metal concentration in the thallus, and the values reflected high ecological imbalance currently verified at the edge of ENP, an area of permanent protection. In areas within ENP, chlorophyll a/b ratio reflected stress factors acting on the thallus, indicating that even legally protected areas are not free from the impact of atmospheric pollutants. P. tinctorum may serve as an effective indicator of edge effects and may be used for biomonitoring pollutant dispersion from agricultural matrices.
Collapse
Affiliation(s)
- Kelly Maria Zanuzzi Palharini
- Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Sul Goiana Highway, Km 01, Rio Verde, GO, 75901-970, Brazil
| | - Luciana Cristina Vitorino
- Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Sul Goiana Highway, Km 01, Rio Verde, GO, 75901-970, Brazil.
| | - Layara Alexandre Bessa
- Laboratory of Plant Mineral Nutrition, Instituto Federal Goiano - Rio Verde Campus, Sul Goiana Highway, Km 01, Rio Verde, GO, 75901-970, Brazil
| | | | - Fabiano Guimarães Silva
- Laboratory of Plant Mineral Nutrition, Instituto Federal Goiano - Rio Verde Campus, Sul Goiana Highway, Km 01, Rio Verde, GO, 75901-970, Brazil
| |
Collapse
|