1
|
Cárcamo-Fincheira P, Nunes-Nesi A, Soto-Cerda B, Inostroza-Blancheteau C, Reyes-Díaz M. Ascorbic acid metabolism: New knowledge on mitigation of aluminum stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109228. [PMID: 39467494 DOI: 10.1016/j.plaphy.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Ascorbic acid (ASC) is an important antioxidant in plant cells, being the main biosynthesis pathway is L-galactose or Smirnoff-Wheeler. ASC is involved in plant growth and development processes, being a cofactor and regulator of multiple signaling pathways in response to abiotic stresses. Aluminum toxicity is an important stressor under acidic conditions, affecting plant root elongation, triggering ROS induction and accumulation of hydrogen peroxide (H2O2). To mitigate damage from Al-toxicity, plants have evolved mechanisms to resist stress conditions, such as Al-tolerance and Al-exclusion or avoidance, both strategies related to the forming of non-phytotoxic complexes or bind-chelates among Al and organic molecules like oxalate. Dehydroascorbate (DHA) degradation generates oxalate when ASC is recycled, and dehydroascorbate reductase (DHAR) expression is inhibited. An alternative strategy is ASC regeneration, mainly due to a higher level of DHAR gene expression and low monodehydroascorbate reductase (MDHAR) gene expression. Therefore, studies performed on Fagopyrum esculentum, Nicotiana tabacum, Poncirus trifoliate, and V. corymbosum suggest that ASC is associated with the Al-resistant mechanism, given the observed enhancements in defense mechanisms, including elevated antioxidant capacity and oxalate production. This review examines the potential involvement of ASC metabolism in Al-resistant mechanisms.
Collapse
Affiliation(s)
- Paz Cárcamo-Fincheira
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile.
| | - Marjorie Reyes-Díaz
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Uddin KM, Meem MH, Akter M, Rahman S, Al-Gawati MA, Alarifi N, Albrithen H, Alodhayb A, Poirier RA, Bhuiyan MH. Design, synthesis, and bioevaluation of novel unsaturated cyanoacetamide derivatives: In vitro and in silico exploration. MethodsX 2024; 12:102691. [PMID: 38660042 PMCID: PMC11041845 DOI: 10.1016/j.mex.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, we synthesized novel α,β-unsaturated 2-cyanoacetamide derivatives (1-5) using microwave-assisted Knoevenagel condensation. Characterization of these compounds was carried out using FTIR and 1H NMR spectroscopy. We then evaluated their in vitro antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Additionally, we employed in silico methods, including ADMET prediction and density functional theory (DFT) calculations of molecular orbital properties, to investigate these cyanoacetamide derivatives (1-5). Molecular docking was used to assess the binding interactions of these derivatives (1-5) with seven target proteins (5MM8, 4NZZ, 7FEQ, 5NIJ, ITM2, 6SE1, and 5GVZ) and compared them to the reference standard tyrphostin AG99. Notably, derivative 5 exhibited the most favorable binding affinity, with a binding energy of -7.7 kcal mol-1 when interacting with the staphylococcus aureus (PDB:5MM8), while also meeting all drug-likeness criteria. Additionally, molecular dynamics simulations were carried out to evaluate the stability of the interaction between the protein and ligand, utilizing parameters such as Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), Radius of Gyration (Rg), and Principal Component Analysis (PCA). A 50 nanosecond molecular dynamics (MD) simulation was performed to investigate stability further, incorporating RMSD and RMSF analyses on compound 5 within the active binding site of the modeled protein across different temperatures (300, 305, 310, and 320 K). Among these temperatures, compound 5 exhibited an RMSD value ranging from approximately 0.2 to 0.3 nm at 310 K (body temperature) with the 5MM8 target, which differed from the other temperature conditions. The in silico results suggest that compound 5 maintained significant conformational stability throughout the 50 ns simulation period. It is consistent with its low docking energy and in vitro findings concerning α,β-unsaturated cyanoacetamides. Key insights from this study include:•The creation of innovative α,β-unsaturated 2-cyanoacetamide derivatives (1-5) employing cost-effective, licensed, versatile, and efficient software for both in silico and in vitro assessment of antibacterial activity.•Utilization of FTIR and NMR techniques for characterizing compounds 1-5.
Collapse
Affiliation(s)
- Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mehnaz Hossain Meem
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mokseda Akter
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahed Alarifi
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raymond A. Poirier
- Department of Chemistry, Memorial University, St. John's, Newfoundland A1B 3 × 7, Canada
| | - Md. Mosharef H. Bhuiyan
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
3
|
Meem MH, Yusuf SB, Al Abbad SS, Rahman S, Al-Gawati M, Albrithen H, Alodhayb AN, Uddin KM. Exploring the anticancer and antibacterial potential of naphthoquinone derivatives: a comprehensive computational investigation. Front Chem 2024; 12:1351669. [PMID: 38449478 PMCID: PMC10914998 DOI: 10.3389/fchem.2024.1351669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
This study investigates the potential of 2-(4-butylbenzyl)-3-hydroxynaphthalene-1,4-dione (11) and its 12 derivatives as anticancer and biofilm formation inhibitors for methicillin-resistant staphylococcus aureus using in silico methods. The study employed various computational methods, including molecular dynamics simulation molecular docking, density functional theory, and global chemical descriptors, to evaluate the interactions between the compounds and the target proteins. The docking results revealed that compounds 9, 11, 13, and ofloxacin exhibited binding affinities of -7.6, -7.9, -7.5, and -7.8 kcal mol-1, respectively, against peptide methionine sulfoxide reductase msrA/msrB (PDB: 3E0M). Ligand (11) showed better inhibition for methicillin-resistant staphylococcus aureus msrA/msrB enzyme. The complex of the 3E0M-ligand 11 remained highly stable across all tested temperatures (300, 305, 310, and 320 K). Principal Component Analysis (PCA) was employed to evaluate the behavior of the complex at various temperatures (300, 305, 310, and 320 K), demonstrating a total variance of 85%. Convergence was confirmed by the eigenvector's cosine content value of 0.43, consistently displaying low RMSD values, with the minimum observed at 310 K. Furthermore, ligand 11 emerges as the most promising candidate among the compounds examined, showcasing notable potential when considering a combination of in vitro, in vivo, and now in silico data. While the naphthoquinone derivative (11) remains the primary candidate based on comprehensive in silico studies, further analysis using Frontier molecular orbital (FMO) suggests while the Egap value of compound 11 (2.980 eV) and compound 13 (2.975 eV) is lower than ofloxacin (4.369 eV), indicating their potential, so it can be a statement that compound 13 can also be investigated in further research.
Collapse
Affiliation(s)
- Mehnaz Hossain Meem
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Sumaiya Binte Yusuf
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Sanaa S. Al Abbad
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamad Albrithen
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah N. Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|