1
|
Agama-Acevedo E, Santana-Galeana RS, Rosell CM, Bello-Pérez LA. Exploring Underused Starchy Food Crops to Extend Their Consumption: Mexico as Case of Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:113. [PMID: 40286002 DOI: 10.1007/s11130-025-01347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Mexico has one of the world's largest biodiversity, associated with the regions (forest, jungle, mountain, tropical) and the climate. The geography of Mexico induces favorable conditions for the growth of food crops. This article aims to show the characteristics of some starchy food crops consumed in diverse regions of México, which have functional and nutritional characteristics that can be exploited to extend their consumption in the country. The reported studies of those Mexican starchy food crops indicate the nutritional potential to directly consume those foods or use them as raw material to prepare new foods with functional properties due to those present bioactive compounds and dietary fiber. This review suggests diversification of those underutilized traditional Mexican starchy food crops with an impact on the agricultural producers.
Collapse
Affiliation(s)
- Edith Agama-Acevedo
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Yautepec, Morelos, 62731, México.
| | - Reyna S Santana-Galeana
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Yautepec, Morelos, 62731, México
| | - Cristina M Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Paterna, Spain
| | - Luis Arturo Bello-Pérez
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Yautepec, Morelos, 62731, México
| |
Collapse
|
2
|
Amosova AV, Yurkevich OY, Semenov AR, Samatadze TE, Sokolova DV, Artemyeva AM, Zoshchuk SA, Muravenko OV. Genome Studies in Amaranthus cruentus L. and A. hypochondriacus L. Based on Repeatomic and Cytogenetic Data. Int J Mol Sci 2024; 25:13575. [PMID: 39769338 PMCID: PMC11678860 DOI: 10.3390/ijms252413575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Amaranthus cruentus L. and Amaranthus hypochondriacus L. are valuable and promising food crops for multi-purpose use that are distributed worldwide in temperate, subtropical, and tropical zones. However, their karyotypes and genomic relationships still remain insufficiently studied. For the first time, a comparative repeatome analysis of A. cruentus and A. hypochondriacus was performed based on the available NGS data; bioinformatic analyses using RepeatExplorer/TAREAN pipelines; and chromosome FISH mapping of 45S rDNA, 5S rDNA, and the most abundant satellite DNAs. In the repeatomes of these species, interspecific variations in the amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were detected. In the repeatomes of both species, shared satDNAs with high sequence similarity were identified. The chromosome distribution patterns of four effective molecular markers, 45S rDNA, 5S rDNA, AmC4, and AmC9, allowed us to identify all chromosome pairs in the species karyotypes, construct unique karyograms of A. cruentus and A. hypochondriacus, and confirm the close relationship between their genomes. These results are important for comparative karyotypic studies within the genus Amaranthus. Our findings demonstrated that cytogenomic analyses might provide important data on genomic relationships within Amaranthus and increase knowledge on genome organization in these valuable crops.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey R. Semenov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Diana V. Sokolova
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Anna M. Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Kumar H, Guleria S, Kimta N, Dhalaria R, Nepovimova E, Dhanjal DS, Alomar SY, Kuca K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr Res Food Sci 2024; 9:100836. [PMID: 39290651 PMCID: PMC11406246 DOI: 10.1016/j.crfs.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients 2023; 15:nu15020351. [PMID: 36678223 PMCID: PMC9864886 DOI: 10.3390/nu15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The estimated increase in world population will lead to a deterioration in global food security, aggravated in developing countries by hidden hunger resulting from protein deficiency. To reduce or avoid this crisis, a dietary shift towards the consumption of sustainable, nutrient-rich, and calorically efficient food products has been recommended by the FAO and WHO. Plant proteins derived from grains and seeds provide nutritionally balanced diets, improve health status, reduce poverty, enhance food security, and contain several functional compounds. In this review, the current evidence on the nutritional and functional properties of underutilized grains is summarized, focusing on their incorporation into functional foods and the role of their proteins as novel source of bioactive peptides with health benefits.
Collapse
|
5
|
Figueroa-González JJ, Lobato-Calleros C, Vernon-Carter EJ, Aguirre-Mandujano E, Alvarez-Ramirez J, Martínez-Velasco A. Modifying the structure, physicochemical properties, and foaming ability of amaranth protein by dual pH-shifting and ultrasound treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Park SJ, Sharma A, Lee HJ. A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants (Basel) 2020; 9:E1236. [PMID: 33291467 PMCID: PMC7762149 DOI: 10.3390/antiox9121236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amaranth (Amaranthus spp.) plant commonly refers to the sustainable food crop for the 21st century. The crop has witnessed significant attention in recent years due to its high nutritional value and agronomic advantages. It is a relatively well-balanced cosmopolitan food that is a protector against chronic diseases. Usually, the antioxidant activities of amaranth are held responsible for its defensive behavior. Antioxidant activity of plants, generally, is attributed to their phytochemical compounds. The current interest, however, lies in hydrolysates and bioactive peptides because of their numerous biological functions, including antioxidant effect. While the importance of bioactive peptides has been progressively recognized, an integrated review of recent studies on the antioxidant ability of amaranth species, especially their hydrolysates and peptides has not been generated. Hence, in this review, we summarize studies focused on the antioxidant capacity of amaranth renewal over the period 2015-2020. It starts with a background and overall image of the amaranth-related published reviews. The current research focusing on in vitro, in vivo, and chemical assays-based antioxidant activity of different amaranth species are addressed. Finally, the last segment includes the latest studies concerning free radical scavenging activity and metal chelation capacity of amaranth protein hydrolysates and bioactive peptides.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
7
|
García Fillería SF, Rodríguez M, Tironi VA. Antioxidant effect of amaranth flour or protein isolate incorporated in high-fat diets fed to Wistar rats. Influence of dose and administration duration. J Food Biochem 2020; 45:e13552. [PMID: 33145815 DOI: 10.1111/jfbc.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022]
Abstract
This study evaluated the effect on Wistar rat's oxidative status of incorporating amaranth flour (AF) and protein isolate (AI) in increased-fat diets. Five of the groups were fed for 4 weeks with either BD (basal diet), Chol+F (2% cholesterol, 10% porcine fat), Chol+F+E (0.005% α-tocopherol), Chol+F+AF1 or Chol+F+AI1 (25% of protein replacement) diets. The other two groups were fed for 4 weeks with Chol+F and then 1 week with Chol+F+AF2 or Chol+F+AI2 diet (50% of protein replacement). Various effects on the oxidative stress biomarkers in tissues (intestine and liver) were observed. These effects were dependent on the ingredients, dose, and administration time. In the intestinal cells, Chol+F+AF1 and Chol+F+AI2 produced an increment in the reduced glutathione (GSH) content (56% and 39%, respectively), while Chol+F+AF2 induced an increment in the superoxide dismutase (SOD) (25%) and glutathione peroxidase (GPx) (46%) activities. The presence of certain components in flour (e.g., fiber, polyphenols, squalene) could explain the higher activity recorded for AF. In the liver, Chol+F+AF2 produced a decrease in SOD (19%) and GSH (36%), as well as an increase in GPx (255%); Chol+F+AI1 and Chol+F+AI2 also produced a decrease in GSH (36% and 24%, respectively) and important increments in GPx activity (273% for Chol+F+AI1 and 2,900% for Chol+F+AI2 ). These effects were dependent on the AI dose and were probably produced by absorbed peptides. PRACTICAL APPLICATIONS: It is known that redox imbalances are involved in the genesis of many chronic diseases. Therefore, it is possible to prevent them or limit their severity by improving the body's antioxidant defense mechanisms through dietary incorporation of antioxidant substances. The results suggest that amaranth protein isolate and amaranth flour have the potential for regulating intestinal and liver cells redox balance; effects were more evident when they contributed 50% of the diet's protein content and were administered for 1 week. Both amaranth ingredients could be used as ingredients in the development of functional foods with beneficial antioxidant properties.
Collapse
Affiliation(s)
- Susan F García Fillería
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, La Plata, Argentina
| | - Mariela Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, La Plata, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, La Plata, Argentina
| |
Collapse
|
8
|
Nardo AE, Suárez S, Quiroga AV, Añón MC. Amaranth as a Source of Antihypertensive Peptides. FRONTIERS IN PLANT SCIENCE 2020; 11:578631. [PMID: 33101347 PMCID: PMC7546275 DOI: 10.3389/fpls.2020.578631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Amaranth is an ancestral crop used by pre-Columbian cultures for 6000 to 8000 years. Its grains have a relevant chemical composition not only from a nutritional point of view but also due to the contribution of components with good techno-functional properties and important potential as bioactive compounds. Numerous studies have shown that amaranth storage proteins possess encrypted sequences that, once released, exhibit different physiological activities. One of the most studied is antihypertensive activity. This review summarizes the progress made over the last years (2008-2020) related to this topic. Studies related to inhibition of different enzymes of the Renin-Angiotensin-Aldosterone system, in particular Angiotensin Converting Enzyme (ACE) and Renin, as well as those referring to potential modulation mechanisms of tissue or local Renin-Angiotensin-Aldosterone system, are analyzed, including in silico, in vitro, in vivo, and ex vivo assays. Furthermore, the potential use of these bioactive peptides or products containing them, in the elaboration of functional food matrices is discussed. Finally, the most relevant conclusions and future requirements in research and development of food products are presented.
Collapse
Affiliation(s)
| | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas (CIC-PBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata), La Plata, Argentina
| |
Collapse
|
9
|
Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100588] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137:111178. [PMID: 32035214 DOI: 10.1016/j.fct.2020.111178] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pseudocereals grains, edible seeds belonging to dicotyledonous plant species, are becoming a current trend in human diets as gluten-free (GF) grains with excellent nutritional and nutraceutical value. Pseudocereals are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The present review aims to summarize the nutritional quality and phytochemical profile of the three main pseudocereal grains: quinoa, amaranth and buckwheat. In addition, current evidence about their health benefits in animal models and human studies is also provided in detail. Based on the accumulating research supporting the inclusion of pseudocereals grains in the diet of celiac persons, this review discusses the recent advances in their application for the development of new GF products. Future directions for a wider cultivation and commercial exploitation of these crops are also highlighted.
Collapse
|
11
|
Chmelík Z, Šnejdrlová M, Vrablík M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr Res 2019; 72:36-45. [PMID: 31757630 DOI: 10.1016/j.nutres.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
The aim of this review was to summarize data regarding amaranth as a potential component of lifestyle modification to improve cardiovascular risk profiles by modifying cardiovascular risk factors such as cholesterol, diabetes, and hypertension. PubMed was searched for appropriate articles. The main inclusion criteria for articles were as follows: interventions with amaranth; conducted in humans or animals or in vitro; and reported serum lipids and lipoprotein levels, and antidiabetic, antihypertensive, and antioxidant abilities. The outcome measures were changes in serum lipids and the presence of antidiabetic, antihypertensive, and antioxidant activity. A total of 33 articles were included herein. Regarding hypolipidemic activity, most studies investigated the effect of intervention with amaranth in animals, and fewer studies were performed in humans. Most studies in animal models demonstrated the ability of amaranth to decrease total cholesterol and low-density lipoprotein cholesterol. Pilot studies in humans were not convincing regarding amaranth's lipid-lowering activity. Based on this search, it is not clear which constituents are potentially responsible for the hypocholesterolemic effect of amaranth. Some authors tend to think that squalene can play a role in this effect, whereas others suggest that different components of amaranth are of greater importance (eg, sterols, oil fractions rich in fatty acids, proteins, amino acids, or fiber) for its hypocholesterolemic effect. It is possible that several constituents are jointly responsible for this action. Regarding the antidiabetic, antihypertensive, and antioxidant activities, most studies were performed in vitro and showed good potential for all three biological effects. Future research should focus on clarifying the effect of amaranth on high-density lipoprotein cholesterol, identifying the constituents responsible for these beneficial effects, and providing more data regarding its use in humans, ideally using randomized controlled trials. The antidiabetic, antihypertensive, and antioxidant activities found in vitro should be confirmed further in animal or human models.
Collapse
Affiliation(s)
- Zdeněk Chmelík
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| | - Michaela Šnejdrlová
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| | - Michal Vrablík
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| |
Collapse
|
12
|
Beema Shafreen R, Seema S, Martinez-Ayala AL, Lozano-Grande MA, Robles-Sánchez M, Szterk A, Grishko M, Hanuka E, Katrich E, Gorinstein S. Binding and potential antibiofilm activities of Amaranthus proteins against Candida albicans. Colloids Surf B Biointerfaces 2019; 183:110479. [DOI: 10.1016/j.colsurfb.2019.110479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022]
|
13
|
Sisti MS, Scilingo A, Añón MC. Effect of the Incorporation of Amaranth (Amaranthus Mantegazzianus) into Fat- and Cholesterol-Rich Diets for Wistar Rats. J Food Sci 2019; 84:3075-3082. [PMID: 31599971 DOI: 10.1111/1750-3841.14810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
The hypocholesterolemic effect of amaranth was studied in male Wistar rats fed a high-fat diet that was supplemented with amaranth flour, AF, or isolated protein, AI. Likewise, an in vitro test was carried out, in which the capacity of the AI, AF, the digested isolate, DAI, and the digested amaranth flour, DAF, to displace the cholesterol of the model micelles was evaluated. The in vivo results showed an increase in the excretion of cholesterol through feces (77% for AF7; 23% and 108% for AI30 and AF30, respect control) and a decrease in the content of hepatic cholesterol (98% for AF7; 96% and 53% for AI30 and AF30 respect control); whereas in vitro it was shown that both AF and DAF have greater power to displace cholesterol than the AI and DAI (IC50 0.1, 0.71, 0.2, and 2.1 for AF, DAF, AI, and DAI, respectively). These evidences show that the proteins and fibers of amaranth have an effect on cholesterol metabolism. PRACTICAL APPLICATION: Nowadays, consumers give great importance to the effect that food has on health. The results shown in this work evidence the potential hypocholesterolemic activity presented by amaranth, this is of great importance due to the increase in the incidence of dyslipidemia in the world population and the importance of amaranth as a nonextensive crop of excellent agronomic, nutritional, and bioactive properties suitable for preparation of functional foods.
Collapse
Affiliation(s)
- Martín S Sisti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| | - Adriana Scilingo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| |
Collapse
|
14
|
Valdez-Meza EE, Raymundo A, Figueroa-Salcido OG, Ramírez-Torres GI, Fradinho P, Oliveira S, de Sousa I, Suárez-Jiménez M, Cárdenas-Torres FI, Islas-Rubio AR, Rodríguez-Olibarría G, Ontiveros N, Cabrera-Chávez F. Pasta Enrichment with an Amaranth Hydrolysate Affects the Overall Acceptability while Maintaining Antihypertensive Properties. Foods 2019; 8:E282. [PMID: 31344934 PMCID: PMC6722561 DOI: 10.3390/foods8080282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alcalase-treated amaranth proteins generate angiotensin-1-converting enzyme (ACE-1) inhibitory peptides, which could be useful for functional foods development. Our aim was to evaluate the technological, sensory, and antihypertensive properties of pasta enriched with an amaranth hydrolysate. METHODS Pasta with 11% (A; control), 15% (B), and 20% (C) of protein content were formulated. Pastas B and C were supplemented with an alcalase-treated amaranth protein concentrate. Cooking time, cooking lost, color, and texture were assessed. An untrained panel (n = 30) evaluated sensory attributes. The antihypertensive effect was evaluated in hypertensive rats. RESULTS The hydrolysate IC50 was 0.014 mg/mL. Optimum cooking time and cooking loss decreased in products B and C vs. A (p < 0.05). The L* values decreased in pasta C. Firmness increased in pasta C vs. A (p < 0.05). Adhesiveness was different among groups (p < 0.05). Pasta A had the highest acceptability (p < 0.05). The products B and C, and captopril (positive control) showed antihypertensive properties after 3 h of supplementation (p < 0.05). This effect remained after 7 h, 8 h, or 9 h. CONCLUSIONS The addition of amaranth hydrolysates to pasta negatively impacts on the overall acceptability and, to a lesser extent, on pasta taste. However, it is possible to maintain the antihypertensive properties of the supplemented pasta under physiological conditions.
Collapse
Affiliation(s)
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | | | - Patrícia Fradinho
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sonia Oliveira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel de Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | | | | | | | - Noé Ontiveros
- Division of Sciences and Engineering, Department of Chemical, Biological and Agricultural Sciences, University of Sonora, Navojoa, Sonora 85880, Mexico.
| | | |
Collapse
|
15
|
In vivo and in vitro model studies on noodles prepared with antioxidant-rich pseudocereals. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00190-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Vilcacundo R, Barrio DA, Piñuel L, Boeri P, Tombari A, Pinto A, Welbaum J, Hernández-Ledesma B, Carrillo W. Inhibition of Lipid Peroxidation of Kiwicha ( Amaranthus caudatus) Hydrolyzed Protein Using Zebrafish Larvae and Embryos. PLANTS 2018; 7:plants7030069. [PMID: 30200527 PMCID: PMC6161091 DOI: 10.3390/plants7030069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023]
Abstract
Amaranth protein concentrate (APC) was hydrolyzed under in vitro gastrointestinal conditions. APC proteins were partially degraded by pepsin at pHs 1.2, 2.0, and 3.2. During the intestinal phase (pepsin/pancreatin enzymes at pH 7.0), no polypeptide bands were observed in the gel, suggesting the susceptibility of amaranth proteins to the action of digestive enzymes. The potent in vitro inhibition of lipid peroxidation, shown by the gastric and intestinal digests, was confirmed in the zebrafish larvae, with a 72.86% reduction in oxidation of lipids in the presence of the gastric hydrolysate at pH 2.0, compared to a 95.72% reduction in the presence of the gastrointestinal digest. APC digests were capable of reducing reactive oxygen species (ROS) production in the zebrafish embryo model with a value of fluorescence of 52.5% for the gastric hydrolysate, and 48.4% for the intestinal hydrolysate.
Collapse
Affiliation(s)
- Rubén Vilcacundo
- Laboratory of Functional Foods, Faculty of Foods Sciences and Engineering, Technical University of Ambato, Av. Los Chasquis y Rio Payamino, Campus Huachi, Ambato 1801334, Ecuador.
| | - Daniel Alejandro Barrio
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Lucrecia Piñuel
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Patricia Boeri
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Andrea Tombari
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Adelita Pinto
- Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador.
| | - James Welbaum
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79413, USA.
| | | | - Wilman Carrillo
- Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador.
| |
Collapse
|
17
|
Vera Hernández FP, Martínez Núñez M, Ruiz Rivas M, Vázquez Portillo RE, Bibbins Martínez MD, Luna Suárez S, Rosas Cárdenas FDF. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:713-721. [PMID: 29603549 DOI: 10.1111/plb.12725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Studies of gene expression are very important for the identification of genes that participate in different biological processes. Currently, reverse transcription quantitative real-time PCR (RT-qPCR) is a high-throughput, sensitive and widely used method for gene expression analysis. Nevertheless, RT-qPCR requires precise normalisation of data to avoid the misinterpretation of experimental data. In this sense, the selection of reference genes is critical for gene expression analysis. At this time, several studies focus on the selection of reference genes in several species. However, the identification and validation of reference genes for the normalisation of RT-qPCR have not been described in amaranth. A set of seven housekeeping genes were analysed using RT-qPCR, to determine the most stable reference genes in amaranth for normalisation of gene expression analysis. Transcript stability and gene expression level of candidate reference genes were analysed in different tissues, at different developmental stages and under different types of stress. The data were compared using the geNorm, NormFinder and Bestkeeper statistical methods. The reference genes optimum for normalisation of data varied with respect to treatment. The results indicate that AhyMDH, AhyGAPDH, AhyEF-1α and AhyACT would be optimum for accurate normalisation of experimental data, when all treatment are analysed in the same experiment. This study presents the most stable reference genes for normalisation of gene expression analysis in amaranth, which will contribute significantly to future gene studies of this species.
Collapse
Affiliation(s)
- F P Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Ruiz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - R E Vázquez Portillo
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M D Bibbins Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - S Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - F de F Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| |
Collapse
|
18
|
López DN, Galante M, Robson M, Boeris V, Spelzini D. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. Int J Biol Macromol 2018; 109:152-159. [DOI: 10.1016/j.ijbiomac.2017.12.080] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022]
|
19
|
García Fillería SF, Tironi VA. Prevention of in vitro oxidation of low density lipoproteins (LDL) by amaranth peptides released by gastrointestinal digestion. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH. The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|