1
|
Awaeloh N, Limsuwan S, Na-Phatthalung P, Kaewmanee T, Chusri S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai 'Namwa') and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025; 14:205. [PMID: 39856872 PMCID: PMC11764956 DOI: 10.3390/foods14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
With the growing consumer demand for natural functional ingredients that promote health and well-being while preventing age-related diseases, this study aimed to develop extruded snacks enriched with Curcuma longa (turmeric) microcapsules, recognized for their significant antioxidant properties. Unripe banana flour (Musa ABB cv. Kluai 'Namwa') and rice (Oryza sativa) flour were employed as a gluten-free base to create this novel extruded snack. Curcuma longa extract microcapsules were prepared using a spray-drying technique with varying core-to-wall ratios. Antioxidant capacities were assessed through DPPH, ABTS, superoxide radical scavenging, metal chelating, and ferric-reducing assays. The CM6 microcapsules, prepared at 140 °C with a 1:10 core-to-wall ratio, exhibited potent antioxidant activity, with 58.93 ± 3.31% inhibition for DPPH radicals, 87.58 ± 1.33% for ABTS, and 78.41 ± 1.40% for superoxide radicals. Snacks enriched with 0.25% CM6 microcapsules received high consumer acceptance, with an average liking score of 7.5 out of 9. These findings suggest that snacks made with these gluten-free flours and Curcuma longa microcapsules could be novel, convenient, and appealing functional food products that offer an attractive way to deliver antioxidant benefits with high consumer acceptance. Further research on evaluating the active constituents in the snack, its long-term health benefits, and shelf-life stability is recommended for commercialization.
Collapse
Affiliation(s)
- Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
2
|
Tripodi F, Lambiase A, Moukham H, Spandri G, Brioschi M, Falletta E, D'Urzo A, Vai M, Abbiati F, Pagliari S, Salvo A, Spano M, Campone L, Labra M, Coccetti P. Targeting protein aggregation using a cocoa-bean shell extract to reduce α-synuclein toxicity in models of Parkinson's disease. Curr Res Food Sci 2024; 9:100888. [PMID: 39525389 PMCID: PMC11550773 DOI: 10.1016/j.crfs.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are among the major challenges in modern medicine, due to the progressive aging of the world population. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with the aggregation of the presynaptic protein α-synuclein (α-syn). Here we use two different PD models, yeast cells and neuroblastoma cells overexpressing α-syn, to investigate the protective effect of an extract from the cocoa shell, which is a by-product of the roasting process of cocoa beans. The LC-ESI-qTOF-MS and NMR analyses allow the identification of amino acids (including the essential ones), organic acids, lactate and glycerol, confirming also the presence of the two methylxanthines, namely caffeine and theobromine. The present study demonstrates that the supplementation with the cocoa bean shell extract (CBSE) strongly improves the longevity of yeast cells expressing α-syn, reducing the level of reactive oxygen species, activating autophagy and reducing the intracellular protein aggresomes. These anti-aggregation properties are confirmed also in neuroblastoma cells, where CBSE treatment leads to activation of AMPK kinase and to a significant reduction of toxic α-syn oligomers. Results obtained by surface plasmon resonance (SPR) assay highlights that CBSE binds α-syn protein in a concentration-dependent manner, supporting its inhibitory role on the amyloid aggregation of α-syn. These findings suggest that the supplementation with CBSE in the form of nutraceuticals may represent a promising way to prevent neurodegenerative diseases associated with α-syn aggregation.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Giorgia Spandri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Maura Brioschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Marina Vai
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Francesco Abbiati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Mattia Spano
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
3
|
Ramos-Escudero F, Rojas-García A, Cádiz-Gurrea MDLL, Segura-Carretero A. High potential extracts from cocoa byproducts through sonotrode optimal extraction and a comprehensive characterization. ULTRASONICS SONOCHEMISTRY 2024; 106:106887. [PMID: 38696912 PMCID: PMC11070619 DOI: 10.1016/j.ultsonch.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Cocoa pod husk (CPH) and cocoa bean shell (CBS) are by-products obtained during pre-processing and processing of cocoa beans. Several bioactive compounds have been identified in these by-products that can be used for commercial applications as a way to promote the circular economy. Therefore, the objective of this paper was to recover bioactive compounds from CPH and CBS by sonoextraction process, to determine the type, content, and antioxidant activity in optimized extracts. To achieve our purpose, an optimization strategy using Box-Behnken Design coupled response surface methodology (MRS) was applied. The extraction conditions were optimized. The results obtained for CBS were: TPC (193 mg GAE/g), TEAC (1.02 mmol TE/g), FRAP (1.02 mmol FeSO4/g) and ORAC (2.6 mmol TE/g), while for CPH, the reported values were: TPC (48 mg GAE/g), TEAC (0.30 mmol TE/g), FRAP (0.35 mmol FeSO4/g) and ORAC (0.43 mmol TE/g) under the optimized conditions: Time (XA): 15 min, Amplitude (XB): 80 %, Ethanol (XC): 50 %. The LC-ESI-qTOF-MS analysis results allowed the identification of 79 compounds, of which 39 represent the CBS extract, while 40 compounds were identified in CPH extract. To conclude, sonotrode based extraction could be considered as an efficient and fast alternative for the recovery of bioactive substances from CBS and CPH.
Collapse
Affiliation(s)
- Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 550 15024 Lima, Perú; Carrera de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 550 15024 Lima, Perú.
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| |
Collapse
|
4
|
Demirci S, Elmaci C, Atalar İ, Toker OS, Palabiyik I, Konar N. Influence of process conditions of alkalization on quality of cocoa powder. Food Res Int 2024; 182:114147. [PMID: 38519177 DOI: 10.1016/j.foodres.2024.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
In this study, the effects of independent variables such as alkaline (NaOH) salt concentration (3.0-6.0 g/100 mL), alkalization temperature (60-90 °C), and time (20-40 min) on cocoa powder (low-fat) properties were investigated by using Central Composite Design. The physicochemical and color properties of samples, powder characteristics, volatile component profile, total polyphenol content (TPC), as well as antioxidant activity potentials using different methods (DPPH and ABTS) were determined. Significant models were identified for the effects on major alkalization indicators (L*, a*/b*, pH), as well as TPC and antioxidant activity potential (DPPH), which are the main motivators for the preference and consumption of cocoa products (p < 0.05). The established model was validated, and their predicted values were found to be very close to real results. It was determined that the alkali concentration had a more significant effect on dependent variables, especially on alkalization indicators, compared to the other independent variables. Furthermore, strong correlations were determined between TPC and antioxidant activity potential and color properties (L*, a*, b*, and a*/b*). Optimum concentration, temperature and time were found to be 5.3 %, 84 °C and 35.7 min for maximizing a*/b* value. The establishment of such models lead to optimizing process conditions of alkalization with minimum effort and labor force for obtaining cocoa powder with desired quality depending on the usage purpose.
Collapse
Affiliation(s)
| | | | - İlyas Atalar
- Eskisehir Osmangazi University, Agriculture Faculty, Food Engineering Department, Eskisehir, Turkey
| | - Omer Said Toker
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, İstanbul, Turkey
| | - Ibrahim Palabiyik
- Tekirdag Namik Kemal University, Agriculture Faculty, Food Engineering Department, Tekirdag, Turkey
| | - Nevzat Konar
- Ankara University Agriculture Faculty, Dairy Technology Department, Ankara, Turkey.
| |
Collapse
|
5
|
Sánchez M, Laca A, Laca A, Díaz M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants (Basel) 2023; 12:antiox12051028. [PMID: 37237894 DOI: 10.3390/antiox12051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Chen S, Zhu H, Luo Y. The gut-mediated function of polyphenols: Opinions on functional foods development for non-alcoholic fatty liver disease. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
7
|
Ziagova MG, Mavromatidou C, Samiotis G, Amanatidou E. Enhancing Phenolic Content of Medicinal Aromatic Plants Extracts-Biofunctional Foods Preparation. PLANTS (BASEL, SWITZERLAND) 2021; 11:76. [PMID: 35009080 PMCID: PMC8747318 DOI: 10.3390/plants11010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In this study, the assessment of TPC and antioxidant activity enhancement of medicinal and aromatic plant (MAP) aqueous extracts using natural sweeteners or encapsulation materials was carried out. MAP extracts fortified with polyphenols were used to produce biofunctional chocolate bites. Honey or erythritol added to Melissa officinalis concentrated aqueous extracts exhibited TPC at 19.53 mg GAE/mL and 18.24 mg GAE/mL, respectively, and DPPH radical scavenging activity greater than 82%, comparing to its non-concentrated aqueous extract (3.74 mg GAE/mL and 72.9%, respectively). Honey added to MAP concentrated aqueous extract mixtures presented up to twofold higher TPC compared to M. officinalis concentrated aqueous extracts with honey. Chocolate bites with MAP concentrated aqueous extract mixtures and honey exhibited TPC and DPPH radical scavenging activity at 29.48 mg GAE/g chocolate and 93.7%, respectively. The addition of gum arabic or inulin in MAP concentrated aqueous extract mixtures increased the TPC up to 12-fold (40.37 mg GAE/mL and 34.14 mg GAE/mL, respectively) compared to its non-concentrated aqueous extracts (3.38 mg GAE/mL), whereas DPPH radical scavenging activity approached 99.5%. Honey incorporation as a sweetener and polyphenolic compound encapsulation in gum arabic can lead to the production of biofunctional foods with elevated cytoprotective action without compromising their organoleptic attributes.
Collapse
|