1
|
Zhao W, Li H, Ge Q, Cong H, Yang S. Synthesis of Dihydroquinoxalinones from Biomass-Derived Keto Acids and o-Phenylenediamines. J Org Chem 2024; 89:3987-3994. [PMID: 38437716 DOI: 10.1021/acs.joc.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A novel catalyst-free cascade amination/cyclization/reduction reaction was developed for the synthesis of various Dihydroquinoxalinones under mild conditions from accessible biomass-derived keto acids and 1,2-phenylenediamines with ammonia borane as a hydrogen donor. This single-step approach enables a simple and eco-friendly route toward the direct synthesis of 12 kinds of Dihydroquinoxalinones in moderate to excellent yields in the green solvent dimethyl carbonate. The results of deuterium-labeling experiments and density function calculations demonstrate that the reductive process proceeds along a double hydrogen transfer pathway. An acceptable yield of Dihydroquinoxalinone can be afforded in a gram-scale experiment, illustrating the practicality of the as-reported reaction system.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Hydrothermal Conversion of Fructose to Lactic Acid and Derivatives: Synergies of Metal and Acid/Base Catalysts. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Selective glucose dehydration over novel metal phthalocyanine catalysts at low temperatures. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Wu J, Kim KH, Jeong K, Kim D, Kim CS, Ha JM, Chandra RP, Saddler JN. The production of lactic acid from chemi-thermomechanical pulps using a chemo-catalytic approach. BIORESOURCE TECHNOLOGY 2021; 324:124664. [PMID: 33454446 DOI: 10.1016/j.biortech.2021.124664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Previous work has shown that sulfonation and oxidation of chemi-thermomechanical pulps (CTMPs) significantly enhanced enzyme accessibility to cellulose while recovering the majority of carbohydrates in the water-insoluble component. In the work reported here, modified (sulfonated and oxidized) CTMPs derived from hard-and-softwoods were used to produce a DL-mix of lactic acid via a chemo-catalytic approach using lanthanide triflate (Ln (OTf)3) catalysts (Ln = La, Nd, Er, and Yb). It was apparent that sulfonation and oxidation of chemi-thermomechanical pulps (CTMPs) also enhanced Ln(OTf)3 catalyst accessibility to the carbohydrate components of the pulps, with the Er(OTf)3 catalysts resulting in significant lactic acid production. Under optimum conditions (250 °C, 60 min, 0.5 mmol catalyst g-1 biomass), 72% and 67% of the respective total carbohydrate present in the hard-and-softwood CTMPs could be converted to lactic acid compared to the respective 59% and 51% yields obtained after energy-intensive ball milling.
Collapse
Affiliation(s)
- Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1 Z4, Canada
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1 Z4, Canada
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Dongwoo Kim
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Richard P Chandra
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1 Z4, Canada
| | - Jack N Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1 Z4, Canada.
| |
Collapse
|
5
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|