1
|
Janjić GV, Marinović SR, Jadranin MB, Ajduković MJ, Đorđević IS, Petković-Benazzouz MM, Milutinović-Nikolić AD. Degradation of tartrazine by Oxone® in the presence of cobalt based catalyst supported on pillared montmorillonite - Efficient technology even in extreme conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121863. [PMID: 37225074 DOI: 10.1016/j.envpol.2023.121863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
The catalytic degradation of hazardous organic contaminants in industrial wastewater is a promising technology. Reactions of tartrazine, the synthetic yellow azo dye, with Oxone® in the presence of catalyst in strong acidic condition (pH 2), were detected by using UV-Vis spectroscopy. In order to extend the applicability profile of Co-supported Al-pillared montmorillonite catalyst an investigation of Oxone® induced reactions were performed in extreme acidic environment. The products of the reactions were identified by liquid chromatography-mass spectrometry (LC-MS). Along with the catalytic decomposition of tartrazine induced by radical attack (confirmed as unique reaction path under neutral and alkaline conditions), the formation of tartrazine derivatives by reaction of nucleophilic addition was also detected. The presence of derivatives under acidic conditions slowed down the hydrolysis of tartrazine diazo bond in comparison to the reactions in neutral environment. Nevertheless, the reaction in acidic conditions (pH 2) is faster than the one conducted in alkaline conditions (pH 11). Theoretical calculations were used to complete and clarify the mechanisms of tartrazine derivatization and degradation, as well as to predict the UV-Vis spectra of compounds which could serve as predictors of certain reaction phases. ECOSAR program, used to estimate toxicological profile of compounds to aquatic animals, indicated an increase in the harmfulness of the compounds identified by LC-MS as degradation products from the reaction conducted for 240min. It could be concluded that an intensification of the process parameters (higher concentration of Oxone®, higher catalyst loading, increased reaction time, etc.) is needed in order to obtain only biodegradable products.
Collapse
Affiliation(s)
- Goran V Janjić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Sanja R Marinović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Milka B Jadranin
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Marija J Ajduković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Ivana S Đorđević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | | | | |
Collapse
|
2
|
Marinović S, Mudrinić T, Milovanović B, Jović-Jovičić N, Ajduković M, Banković P, Milutinović-Nikolić A. The influence of cobalt loading in cobalt-supported aluminum pillared montmorillonite on the kinetic of Oxone® activated oxidative degradation of tartrazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Huang WJ, Liu JH, She QM, Zhong JQ, Christidis GE, Zhou CH. Recent advances in engineering montmorillonite into catalysts and related catalysis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1995163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Jun Huang
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qi Ming She
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Jian Qiang Zhong
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - George E. Christidis
- School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Chellapandi T, Madhumitha G. Montmorillonite clay-based heterogenous catalyst for the synthesis of nitrogen heterocycle organic moieties: a review. Mol Divers 2021; 26:2311-2339. [PMID: 34705155 DOI: 10.1007/s11030-021-10322-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
The use of montmorillonite clay as solid catalyst has grabbed much attention in the liquid phase reactions for organic synthesis. In recent years, there has been a lot of interest in organic synthesis using montmorillonite-based composites, especially in the synthesis of heterogeneous nanoparticles. Due to the robust and green nature of montmorillonite-based nanocatalysts, it has been widely used in N-heterocyclic reactions. In this review, we have concentrated on the reports pertaining the use of montmorillonite-based nanocatalyst in the synthesis of N-heterocycles, a category of organic compounds with excellent biological properties. This manuscript is arranged by the types of N-containing heterocycles synthesized using montmorillonite-based composite as catalysts including polycyclic spirooxindoles, heterocyclic propargylamine, indole-based heterocycles, quinoline and its derivatives, six-membered N-heterocyclic-based compounds and five-membered N-heterocyclic-based compounds. Special attention was given to the structural stability under experimental parameters of the montmorillonite-based composite with the incidence of metal leaching and reusability. Finally, along with recent developments, new findings in heterogeneous montmorillonite (Mt)-based catalysis have also been addressed.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
5
|
Popadić MG, Marinović SR, Mudrinić TM, Milutinović-Nikolić AD, Banković PT, Đorđević IS, Janjić GV. A novel approach in revealing mechanisms and particular step predictors of pH dependent tartrazine catalytic degradation in presence of Oxone®. CHEMOSPHERE 2021; 281:130806. [PMID: 34004519 DOI: 10.1016/j.chemosphere.2021.130806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The degradation of tartrazine in the presence of cobalt activated Oxone® (potassium peroxymonosulfate) was investigated at different initial pH values. Aluminum pillared clay had the role of a support for catalytically active cobalt oxide species. The degradation of tartrazine and the formation of a mixture of degradation products were monitored using the Ultraviolet-Visible (UV-Vis) spectroscopy and gas chromatography-mass spectrometry (GC-MS). The exact qualitative composition of this mixture and the determination of the most probable mechanism of degradation (the primary goal) were obtained using GC-MS. Besides, the main reaction pathway (reaction with SO4˙- radical anion) and secondary pathways were proposed depending on the pH value. At pH = 6 the reaction with HO˙ radical was proposed. At pH = 11 decarboxilation was suggested as the first step of the secondary proposed reaction pathway. The combination of results acquired from the deconvolution of UV-Vis spectra and the theoretical UV-Vis spectra of degradation products, whose occurrence was predicted by quantum-chemical calculations, was proven to be beneficial for the identification of tartrazine degradation products and for defining UV-Vis predictors of particular degradation steps. An additional contribution of this paper, from the reactivity aspect, was the establishment of the critical structural demand for the radical degradation of any diazo compound. The existence of a hydrogen atom bound to a diazo group was found to be the essential prerequisite for the radical cleavage of diazo compounds.
Collapse
Affiliation(s)
- Marko G Popadić
- University of Belgrade-Faculty of Chemistry, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Sanja R Marinović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Tihana M Mudrinić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Aleksandra D Milutinović-Nikolić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Predrag T Banković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ivana S Đorđević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Goran V Janjić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Kinetic analysis of azo dye decolorization during their acid–base equilibria: photocatalytic degradation of tartrazine and sunset yellow. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01654-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|