1
|
Zhang K, Zhou G, Fang T, Ding Z, Liu X. The ionic liquid-based electrolytes during their charging process: Movable endpoints of overscreening effect near the electrode interface. J Colloid Interface Sci 2023; 650:648-658. [PMID: 37437444 DOI: 10.1016/j.jcis.2023.06.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
HYPOTHESIS Adding solvents to ionic liquids (ILs) can lead to the suppression of the overscreening effect near an electrode interface. Also, this suppression can be observed in neat ILs by elongating the length of the nonpolar chains on their ions. Most neat ILs, unlike the ideal model, do not exhibit a crowding effect in experiments. Through molecular dynamics (MD) simulations, researchers can model and analyze these systems in order to understand them. SIMULATIONS In this study, the dynamic change near the electrode interface of ILs-based electrolytes was investigated using MD simulations. The phenomena observed in MD simulations are generally understandable because factors can attenuate charge densities calculated from these simulations. FINDINGS The study findings reveal that both the solvents or nonpolar chains contributed to the formation of nonpolar domains. Also, the microscopic mechanisms and influences of these nonpolar domains were clearly identified. The results are important for real life applications. Some ions form a "point to surface" layer near the electrode of neat ILs. When ILs contain long nonpolar chains, they can suppress the crowding effect through self-assembly behavior. However, when they do not have any chains or short nonpolar chains, it can be difficult to stop the overscreening effect. This means it can become challenging to begin the next stage of the crowding effect.
Collapse
Affiliation(s)
- Kun Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Guohui Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhezheng Ding
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
2
|
Chen J, Yang J, Wu Q, Shi D, Chen K, Zhang Y, Zheng X, Li H. Intramolecular Synergistic Catalysis of Ternary Active Sites of Imidazole Ionic-liquid Polymers Immobilized on Nanosized CoFe2O4@polystyrene Composites for CO2 Cycloaddition. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Hu Y, Li Y, Zhang Z, Li J, Dong S, Zhang J, Li Wang. Insight into the cation-regulated mechanism for the hydration of propargyl alcohols catalyzed by [Bu4P+][Im-]. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Nasirov F, Nasirli E, Ibrahimova M. Cyclic carbonates synthesis by cycloaddition reaction of CO2 with epoxides in the presence of zinc-containing and ionic liquid catalysts. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02330-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Chaban VV, Andreeva NA. Extensively amino-functionalized graphene captures carbon dioxide. Phys Chem Chem Phys 2022; 24:25801-25815. [DOI: 10.1039/d2cp03235j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Amino-functionalized graphene demonstrates certain potential to fix carbon dioxide.
Collapse
Affiliation(s)
| | - Nadezhda A. Andreeva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| |
Collapse
|
6
|
Franceschi P, Nicoletti C, Bonetto R, Bonchio M, Natali M, Dell'Amico L, Sartorel A. Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of α,β-Unsaturated Ketones. Front Chem 2021; 9:783993. [PMID: 34900942 PMCID: PMC8652261 DOI: 10.3389/fchem.2021.783993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
The utilization of carbon dioxide as a raw material represents nowadays an appealing strategy in the renewable energy, organic synthesis, and green chemistry fields. Besides reduction strategies, carbon dioxide can be exploited as a single-carbon-atom building block through its fixation into organic scaffolds with the formation of new C-C bonds (carboxylation processes). In this case, activation of the organic substrate is commonly required, upon formation of a carbanion C-, being sufficiently reactive toward the addition of CO2. However, the prediction of the reactivity of C- with CO2 is often problematic with the process being possibly associated with unfavorable thermodynamics. In this contribution, we present a thermodynamic analysis combined with density functional theory calculations on 50 organic molecules enabling the achievement of a linear correlation of the standard free energy (ΔG0) of the carboxylation reaction with the basicity of the carbanion C-, expressed as the pKa of the CH/C- couple. The analysis identifies a threshold pKa of ca 36 (in CH3CN) for the CH/C- couple, above which the ΔG0 of the carboxylation reaction is negative and indicative of a favorable process. We then apply the model to a real case involving electrochemical carboxylation of flavone and chalcone as model compounds of α,β-unsaturated ketones. Carboxylation occurs in the β-position from the doubly reduced dianion intermediates of flavone and chalcone (calculated ΔG0 of carboxylation in β = -12.8 and -20.0 Kcalmol-1 for flavone and chalcone, respectively, associated with pKa values for the conjugate acids of 50.6 and 51.8, respectively). Conversely, the one-electron reduced radical anions are not reactive toward carboxylation (ΔG0 > +20 Kcalmol-1 for both substrates, in either α or β position, consistent with pKa of the conjugate acids < 18.5). For all the possible intermediates, the plot of calculated ΔG0 of carboxylation vs. pKa is consistent with the linear correlation model developed. The application of the ΔG0 vs. pKa correlation is finally discussed for alternative reaction mechanisms and for carboxylation of other C=C and C=O double bonds. These results offer a new mechanistic tool for the interpretation of the reactivity of CO2 with organic intermediates.
Collapse
Affiliation(s)
- Pietro Franceschi
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Catia Nicoletti
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Ruggero Bonetto
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marcella Bonchio
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, and Centro Interuniversitario per La Conversione Chimica Dell'Energia Solare (SOLARCHEM), Ferrara, Italy
| | - Luca Dell'Amico
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Andrea Sartorel
- Nano and Molecular Catalysis Laboratory, Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Surface active SNS-based dicationic ionic liquids containing amphiphilic anions: Experimental and theoretical studies of their structures and organization in solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
de Araujo GE, de Castro JH, Monteiro WF, de Lima J, Ligabue RA, Lourega RV. Methanation of CO2 from flue gas: experimental study on the impact of pollutants. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Experimental and DFT studies on foam performances of lauryl ether sulfate-based anionic surface active ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Wan YL, Zhang Z, Ding C, Wen L. Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Taib LA, Keshavarz M, Parhami A. Solvent-free synthesis of 4-substituted coumarins catalyzed by novel brønsted acidic ionic liquids with perchlorate anion: a convenient and practical complementary method for pechmann condensation. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01941-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Masood MH, Haleem N, Shakeel I, Jamal Y. Carbon dioxide conversion into the reaction intermediate sodium formate for the synthesis of formic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04255-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Layered double hydroxides as heterostructure LDH@Bi2WO6 oriented toward visible-light-driven applications: synthesis, characterization, and its photocatalytic properties. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01830-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Monteiro WF, Vieira MO, Laschuk EF, Livotto PR, Einloft SM, de Souza MO, Ligabue RA. Experimental-theoretical study of the epoxide structures effect on the CO2 conversion to cyclic carbonates catalyzed by hybrid titanate nanostructures. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Wang T, Zhu X, Mao L, Liu Y, Ren T, Wang L, Zhang J. Synergistic cooperation of bi-active hydrogen atoms in protic carboxyl imidazolium ionic liquids to push cycloaddition of CO2 under benign conditions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Abstract
The imidazolium-based ionic liquids (ILs) are solvents known for selectively solubilizing CO2 from a gas CH4/CO2 mixture, hence we have produced new hybrid adsorbents by immobilizing two ILs on xerogel silica to obtain a solid–gas system that benefits the ILs’ properties and can be industrially applied in CO2 capture. In this work, the ILs (MeO)3Sipmim.Cl and (MeO)3Sipmim.Tf2N were used at different loadings via the sol–gel process employing a based 1-methyl-3-(3-trimethoxysylilpropyl) imidazolium IL associated to the anion Cl− or Tf2N− as a reactant in the synthesis of silica xerogel. The CO2 adsorption measurements were conducted through pressure and temperature gravimetric analysis (PTGA) using a microbalance. SEM microscopies images have shown that there is an IL limit concentration that can be immobilized (ca. 20%) and that the xerogel particles have a spherical shape with an average size of 20 µm. The adsorbent with 20% IL (MeO)3Sipmim.Cl, SILCLX20, shows greater capacity to absorb CO2, reaching a value of 0.35 g CO2 / g adsorbent at 0.1 MPa (298 K). Surprisingly, the result for xerogel with IL (MeO)3Sipmim.Tf2N shows poor performance, with only 0.05 g CO2 / g absorbed, even having a hydrophobic character which would benefit their interaction with CO2. However, this hydrophobicity could interfere negatively in the xerogel synthesis process. The immobilization of ionic liquids in silica xerogel is an advantageous technique that reduces costs in the use of ILs as they can be used in smaller quantities and can be recycled after CO2 desorption.
Collapse
|