1
|
Pereira FAR, Macedo-Filho A, Silva AM, Frazão NF, Sarmento RG, Lima KAL, Melo JJS, Pereira Junior ML, Ribeiro Junior LA, Freire VN. On the structural, electronic, and optical properties of L-histidine crystal: a DFT study. J Mol Model 2023; 29:205. [PMID: 37294345 DOI: 10.1007/s00894-023-05580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023]
Abstract
CONTEXT The monoclinic L-histidine crystal is critical for protein structure and function and is also found in the myelin of brain nerve cells. This study numerically examines its structural, electronic, and optical properties. Our findings indicate that the L-histidine crystal has an insulating band gap of approximately 4.38 eV. Additionally, electron and hole effective masses range between 3.92[Formula: see text]-15.33[Formula: see text] and 4.16[Formula: see text]-7.53[Formula: see text], respectively. Furthermore, our investigation suggests that the L-histidine crystal is an excellent UV collector due to its strong optical absorption activity for photon energies exceeding 3.5 eV. METHODS To investigate the structural, electronic, and optical properties of L-histidine crystals, we used the Biovia Materials Studio software to conduct Density Functional Theory (DFT) simulations as implemented in the CASTEP code. Our DFT calculations were performed using the generalized gradient approximation (GGA) as parameterized by the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, with an additional dispersion energy correction (PBE [Formula: see text] TS) based on the model proposed by Tkatchenko and Scheffler to describe van der Waals interactions. Additionally, we employed the norm-conserving pseudopotential to treat core electrons.
Collapse
Affiliation(s)
- F A R Pereira
- PPGQ-GERATEC, State University of Piauí, 64002-150, Teresina, PI, Brazil
| | - A Macedo-Filho
- PPGQ-GERATEC, State University of Piauí, 64002-150, Teresina, PI, Brazil
- Department of Physics, State University of Piauí, 64002-150, Teresina, PI, Brazil
| | - A M Silva
- Campus Prof. Antonio Geovanne Alves de Sousa, State University of Piauí, 64260-000, Piripiri, PI, Brazil
| | - N F Frazão
- Center for Education and Health, Federal University of Campina Grande, 581750-000, Cuité, PB, Brazil
| | - R G Sarmento
- Campus Minister Petrônio Portella, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - K A L Lima
- PPGQ-GERATEC, State University of Piauí, 64002-150, Teresina, PI, Brazil
| | - J J S Melo
- Department of Physics, Federal Institute of Maranhão, Monte Castelo Campus, 65030-005, São Luis, MA, Brazil
| | - M L Pereira Junior
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, 70910-900, Brasília, Brazil.
| | - L A Ribeiro Junior
- Institute of Physics, University of Brasilia, 70910-900, Brasília, Brazil
| | - V N Freire
- Department of Physics, Federal University of Ceará, 60455-760, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Shi YF, Jiang YP, Sun PP, Wang K, Zhang ZQ, Zhu NJ, Guo R, Zhang YY, Wang XZ, Liu YY, Huo JZ, Wang XR, Ding B. Solvothermal preparation of luminescent zinc(II) and cadmium(II) coordination complexes based on the new bi-functional building block and photo-luminescent sensing for Cu 2+, Al 3+ and L-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119214. [PMID: 33257240 DOI: 10.1016/j.saa.2020.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In industry, over usage of Cu2+ and Al3+ will lead to toxic wastewater, which further to give serious pollution for the environment. On the other hand, L-lysine can enhance serotonin release in the amygdala, with subsequent changes in psychobehavioral responses to stress. Therefore it is the urgent problem to design a method for detecting the amount of Cu2+, Al3+, and L-lysine. In this work, through the solvothermal synthesis method, two new coordination complexes based on the new bifunctional building block 4'-(1H-1,2,4-triazole-1-yl)- [1,1'-biphenyl]-4-carboxylic acid (HL) have been synthesized, namely, [Zn(L)2·4H2O] (complex 1) and [Cd(L)2·4H2O] (complex 2). X-ray single-crystal diffractometer was used to analyze its structure, powder X-ray diffraction (PXRD) patterns confirmed that 1 and 2 powder's purity and 1 can keep stable during the detection process of Cu2+, Al3+, and L-lysine, respectively. Elemental analysis, thermogravimetric analysis, infrared analysis, ultraviolet analysis and fluorescent spectrum have been used to characterize these complexes. The photo-luminescent test showed that 1 can accurately recognize Al3+ and Cu2+ among various cations. On the other hand, 1 can distinguish L-lysine among amino acid molecules. Therefore, 1 can be utilized as a multifunctional fluorescent probe for Al3+(Ksv = 1.5570 × 104 [M]-1), Cu2+(Ksv = 1.4948 × 104 [M]-1) and L-lysine (Ksv = 4.9118 × 104 [M]-1) with low detection limits (17.5 μM, 18.2 μM, 5.6 μM) respectively.
Collapse
Affiliation(s)
- Yang Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yu Peng Jiang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Wang XZ, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Mao XY, Liu JJ, Huo JZ, Wang XR, Ding B. Dual-emission CdTe quantum dot@ZIF-365 ratiometric fluorescent sensor and application for highly sensitive detection of l-histidine and Cu 2. Talanta 2020; 217:121010. [PMID: 32498848 DOI: 10.1016/j.talanta.2020.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
l-histidine acts as a semi-essential amino acid, which is medically used in the treatment of gastric ulcer, anemia, allergies. However, the overuse of l-histidine will result in terrible damage to heart disease, slow growth of animals and water pollution in the environment. In addition, Cu2+ pollution is common environmental pollution in the industry. It has the characteristics of high accumulation, migration, and persistence. Given this, through the post-synthesis strategy, CdTe quantum dots (QDs) were the first time to introduce into zeolitic imidazolate framework-ZIF-365 to synthesis dual-emission hybrid material CdTe@ZIF-365 with high quantum yield. TEM mappings and N2 absorption tests are applied to confirm the combination mode between CdTe quantum dots and ZIF-365. It should be noted that CdTe@ZIF-365 can be successfully utilized as a bi-functional ratiometric sensor for highly sensitive discrimination of l-histidine and Cu2+. Firstly, CdTe@ZIF-365 is applied to a fluorescent ratiometric sensor for Cu2+ with high sensitivity (the Ksv value is 2.7417✕107 [M-1]) and selectivity in the mixed cation ions' solution. On the other hand, CdTe@ZIF-365 also behaved as the first example for an excellent ratiometric fluorescent senor for l-histidine with high sensitivity (the Ksv value is 6.0507✕108 [M-1]) and selectivity in the mixed amino acids' solutions.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jun Jie Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
4
|
Vajglová Z, Kumar N, Peurla M, Eränen K, Mäki-Arvela P, Murzin DY. Cascade transformations of (±)-citronellal to menthol over extruded Ru-MCM-41 catalysts in a continuous reactor. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01251c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic cascade transformations of (±)-citronellal in a continuous mode over bifunctional ruthenium/MCM-41/binder extrudates with different metal location.
Collapse
Affiliation(s)
- Zuzana Vajglová
- Åbo Akademi University
- Johan Gadolin Process Chemistry Centre
- Turku/Åbo
- Finland 20500
| | - Narendra Kumar
- Åbo Akademi University
- Johan Gadolin Process Chemistry Centre
- Turku/Åbo
- Finland 20500
| | | | - Kari Eränen
- Åbo Akademi University
- Johan Gadolin Process Chemistry Centre
- Turku/Åbo
- Finland 20500
| | - Päivi Mäki-Arvela
- Åbo Akademi University
- Johan Gadolin Process Chemistry Centre
- Turku/Åbo
- Finland 20500
| | - Dmitry Yu Murzin
- Åbo Akademi University
- Johan Gadolin Process Chemistry Centre
- Turku/Åbo
- Finland 20500
| |
Collapse
|