1
|
Asmare Z, Aragaw BA, Atlabachew M. Facile Synthesis of Natural Kaolin-Based CuO Catalyst: An Efficient Heterogeneous Catalyst for the Catalytic Reduction of 4-Nitrophenol. ACS OMEGA 2024; 9:48014-48031. [PMID: 39676930 PMCID: PMC11635686 DOI: 10.1021/acsomega.4c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios. The selected as-synthesized CuO/kaolin NC was characterized using a range of advanced spectroscopic and microscopic methods, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), high-angle annular dark-field scanning TEM (HAADF-STEM), and N2 adsorption/desorption analysis. The characterization results confirmed the successful incorporation of CuO NPs into the kaolin sheets, which had an average size of about 18.7 nm. The fabricated CuO/kaolin NC was used as a heterogeneous catalyst for the efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride (NaBH4) in an aqueous system at room temperature. The catalyst demonstrated superior catalytic performance with high 4-NP conversion into 4-AP (>99%) in the aqueous phase (50 mL, 20 mg L-1) within 6 min. In addition, the reaction kinetics of 4-NP reduction was also investigated, and the reaction followed the pseudo-first-order kinetics equation with the apparent rate constant of 1.76 min-1. Furthermore, the Arrhenius and Eyring parameters for the catalytic hydrogenation reaction of 4-NP were calculated in order to investigate the catalytic reaction process in more detail. Moreover, the catalyst exhibited excellent reusability and stability over seven repeated catalytic test cycles without any noticeable decline in catalytic activity. Therefore, this paper could provide a novel, efficient, and environmentally promising clay-based non-noble metal oxide nanocatalyst to reduce nitro compounds in the aqueous system.
Collapse
Affiliation(s)
- Zinabu
Gashaw Asmare
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
- Chemistry
Department, College of Natural and Computational Sciences, Debre Tabor University, PO Box 272 Debre Tabor, Ethiopia
| | - Belete Asefa Aragaw
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Chemistry
Department, College of Science, Bahir Dar
University, PO Box 79 Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Hayri-Senel T, Kahraman E, Sezer S, Erdol-Aydin N, Nasun-Saygili G. Photocatalytic degradation of ciprofloxacin from water with waste polystyrene and TiO 2 composites. Heliyon 2024; 10:e25433. [PMID: 38322861 PMCID: PMC10844575 DOI: 10.1016/j.heliyon.2024.e25433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Ciprofloxacin (CIP) is one of the widely used antibiotics with a broad antimicrobial spectrum in the fluoroquinolone type. Its concentration in water bodies has increased over the years due to its frequent use. Since ciprofloxacin in the aquatic ecosystem adversely affects human health as well as other organisms, it must be removed from wastewater. The aim of this study was to develop Polystyrene (PS) and Titanium dioxide (TiO2) composites that can be used as catalysts in CIP removal by photocatalytic process. Waste PS (obtained from disposable cutlery) was used in the synthesis of these composites. In this study, PS-TiO2 composites with different PS content (C20, C50, C80; the numbers in the names indicate the PS percentage in the composite by weight) were synthesized. This is important in terms of the use of one waste in the removal of another waste. This process was optimized using Box-Behnken design, one of the response surface method. Parameters such as the amount of polymer in the composite, pH and initial CIP concentration were studied and their effects on CIP removal were found. The validity and adequacy of the selected model were evaluated according to the relevant statistical data. These are R2 = 0.9751, adjusted R2 = 0.9565, the model's p-value <0.05 and the lack of fit-value 0.246. Optimum conditions for CIP removal were obtained when the C50 was used, with a pH value of 3 and an initial CIP concentration of 5 mg/L. In the process carried out under these conditions, the CIP removal was found to be 95.01 % at the end of 180 min. This value was predicted as 94.37 % in the model. According to these results, C50 composite synthesized with waste PS can be used effectively for CIP removal.
Collapse
Affiliation(s)
- Tugba Hayri-Senel
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Turkey
| | - Ebru Kahraman
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Turkey
| | - Serhat Sezer
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Turkey
| | - Nalan Erdol-Aydin
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Turkey
| | - Gulhayat Nasun-Saygili
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Turkey
| |
Collapse
|
3
|
Li B, Wen W, Wen W, Guo H, Fu C, Zhang Y, Zhu L. Application of Chitosan/Poly(vinyl alcohol) Stabilized Copper Film Materials for the Borylation of α, β-Unsaturated Ketones, Morita-Baylis-Hillman Alcohols and Esters in Aqueous Phase. Molecules 2023; 28:5609. [PMID: 37513482 PMCID: PMC10386186 DOI: 10.3390/molecules28145609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
A chitosan/poly(vinyl alcohol)-stabilized copper nanoparticle (CP@Cu NPs) was used as a heterogeneous catalyst for the borylation of α, β-unsaturated ketones, MBH alcohols, and MBH esters in mild conditions. This catalyst not only demonstrated remarkable efficiency in synthesizing organoboron compounds but also still maintained excellent reactivity and stability even after seven recycled uses of the catalyst. This methodology provides a gentle and efficient approach to synthesize the organoboron compounds by efficiently constructing carbon-boron bonds.
Collapse
Affiliation(s)
- Bojie Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Wu Wen
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Haifeng Guo
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chengpeng Fu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Removal of Cu(II) by biopolymer-clay nanocomposite adsorbent. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Usgodaarachchi L, Jayanetti M, Thambiliyagodage C, Liyanaarachchi H, Vigneswaran S. Fabrication of r-GO/GO/α-Fe 2O 3/Fe 2TiO 5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Light. MATERIALS (BASEL, SWITZERLAND) 2022; 16:139. [PMID: 36614479 PMCID: PMC9821193 DOI: 10.3390/ma16010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Hematite (α-Fe2O3) and pseudobrookite (Fe2TiO5) suffer from poor charge transport and a high recombination effect under visible light irradiation. This study investigates the design and production of a 2D graphene-like r-GO/GO coupled α-Fe2O3/Fe2TiO5 heterojunction composite with better charge separation. It uses a simple sonochemical and hydrothermal approach followed by L-ascorbic acid chemical reduction pathway. The advantageous band offset of the α-Fe2O3/Fe2TiO5 (TF) nanocomposite between α-Fe2O3 and Fe2TiO5 forms a Type-II heterojunction at the Fe2O3/Fe2TiO5 interface, which efficiently promotes electron-hole separation. Importantly, very corrosive acid leachate resulting from the hydrochloric acid leaching of ilmenite sand, was successfully exploited to fabricate α-Fe2O3/Fe2TiO5 heterojunction. In this paper, a straightforward synthesis strategy was employed to create 2D graphene-like reduced graphene oxide (r-GO) from Ceylon graphite. The two-step process comprises oxidation of graphite to graphene oxide (GO) using the improved Hummer's method, followed by controlled reduction of GO to r-GO using L-ascorbic acid. Before the reduction of GO to the r-GO, the surface of TF heterojunction was coupled with GO and was allowed for the controlled L-ascorbic acid reduction to yield r-GO/GO/α-Fe2O3/Fe2TiO5 nanocomposite. Under visible light illumination, the photocatalytic performance of the 30% GO/TF loaded composite material greatly improved (1240 Wcm-2). Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) examined the morphological characteristics of fabricated composites. X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), X-ray fluorescence (XRF), and diffuse reflectance spectroscopy (DRS) served to analyze the structural features of the produced composites.
Collapse
Affiliation(s)
- Leshan Usgodaarachchi
- Department of Materials Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
6
|
Yasmeen R, Singhaal R, Bajju GD, Sheikh HN. Axially coordinated tin porphyrins anchored graphene oxide hybrid composites as productive catalyst for catalytic conversion of 4-nitrophenol to 4-aminophenol. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
[Cu(C3H3N3S3)3] Adsorption onto ZnTiO3/TiO2 for Coordination-Complex Sensitized Photochemical Applications. MATERIALS 2022; 15:ma15093252. [PMID: 35591585 PMCID: PMC9100386 DOI: 10.3390/ma15093252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Currently, the design of highly efficient materials for photochemical applications remains a challenge. In this study, an efficient semiconductor was prepared, based on a coordination complex (Cu-TTC) of Cu(I) and trithiocyanuric acid on ZnTiO3/TiO2 (ZTO/TO). The Cu-TTC/ZTO/TO composite was prepared by the solvothermal method at room temperature. The structural, optical, and electrochemical characteristics, as well as the photocatalytic performance of the composite, were experimentally and computationally studied. The results show that the Cu-TTC/ZTO/TO composite efficiently extended its photoresponse in the visible region of the electromagnetic spectrum. The electrochemistry of the proposed tautomeric architecture (s-Cu-TTC) clearly reveals the presence of metal–ligand charge-transfer (MLCT) and π → π* excitations. The maximum methylene blue (MB) dye photodegradation efficiency of 95% in aqueous solutions was achieved under the illumination of simulated solar light. Finally, computational calculations based on the Density Functional Theory (DFT) method were performed to determine the electronic properties of the s-Cu-TTC tautomeric structure and clarify the adsorption mechanism of this complex on the surface (101) of both ZnTiO3 and TiO2 oxides. The results obtained allow us to suggest that the Cu-TTC complex is an effective charge carrier and that the Cu-TTC/ZTO/TO composite can be used efficiently for photochemical applications.
Collapse
|