1
|
Clark SJ, Curcio C, Dick AD, Doyle S, Edwards M, Flores-Bellver M, Hass D, Lennon R, Toomey CB, Rohrer B. Breaking Bruch's: How changes in Bruch's membrane influence retinal homeostasis. Exp Eye Res 2025; 255:110343. [PMID: 40107443 DOI: 10.1016/j.exer.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Christine Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, USA
| | - Andrew D Dick
- University of Bristol and UCL-Institute of Ophthalmology and NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, UK
| | - Sarah Doyle
- Department of Clinical Medicine, School of Medicine and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher B Toomey
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston SC, USA.
| |
Collapse
|
2
|
He Y, Wei Y, Ruan S, Wu Q, Xiong Y, Wang L, Jiang Z, Xu E, Yi H. Dietary Supplementation of Lactobacillus reuteri Modulates Amino Acid Metabolism and Extracellular Matrix in the Gut-Liver Axis of Weaned Piglets. Animals (Basel) 2025; 15:1567. [PMID: 40509034 PMCID: PMC12153629 DOI: 10.3390/ani15111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/07/2025] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Weaning stress leads to intestinal dysfunction and impaired growth performance and intestinal development in piglets. This study aims to investigate the effects of Lactobacillus reuteri LR1 on growth performance and amino acid metabolism in the gut-liver axis of weaned piglets. A total of 48 weaned piglets (Duroc × Landrace × Yorkshire, 21 days old) were randomly assigned to the CON group (fed a basal diet) and the LR1 group (fed the basal diet supplemented with 5 × 1010 CFU/kg of Lactobacillus reuteri LR1) with six pens per group and 4 piglets each pen. The results demonstrated that LR1 significantly increased average daily gain (ADG), average daily feed intake (ADFI), and final body weight (p < 0.05). Additionally, LR1 significantly enhanced the villus height of the ileum (p < 0.05) and upregulated the expression of SLC6A19 in the jejunum, as well as SLC6A19, SLC7A1, and SLC38A9 in the ileum (p < 0.05). Amino acid analysis revealed that LR1 elevated the serum concentrations of glycine and hydroxyproline, along with increased taurine in the liver. Masson staining indicated LR1 reduced ileum fiber deposition, with COL3A1 identified as a key component. Furthermore, untargeted metabolomic analysis identified 27 amino acid-related differential metabolites and 11 significantly up-regulated in the plasma of the hepatic portal vein, including L-asparagine, L-citrulline, His-Cys, N-acetyltryptophan, 4-hydroxy-l-isoleucine, Gly-Arg, creatine, ornithine, ectoine, 3-methyl-l-histidine, and stachydrine. Correlation analysis suggested that COL1A2 and COL3A1 were closely associated with these metabolic changes. Overall, these findings suggest that LR1 supplementation promotes growth, improves intestinal morphology, reduces fiber deposition, and enhances amino acid metabolism in the gut-liver axis of weaned piglets.
Collapse
Affiliation(s)
- Yiyi He
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China;
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Yangyang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Shihui Ruan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Qiwen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Yunxia Xiong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Hongbo Yi
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; (Y.W.); (S.R.); (Q.W.); (Y.X.); (L.W.); (Z.J.)
| |
Collapse
|
3
|
Bril M, Boesveld JN, Coelho-Rato LS, Sahlgren CM, Bouten CVC, Kurniawan NA. Dynamic substrate topographies drive actin- and vimentin-mediated nuclear mechanoprotection events in human fibroblasts. BMC Biol 2025; 23:94. [PMID: 40189524 PMCID: PMC11974106 DOI: 10.1186/s12915-025-02199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Dynamic physical changes in the extracellular environment of living tissues present a mechanical challenge for resident cells that can lead to damage to the nucleus, genome, and DNA. Recent studies have started to uncover nuclear mechanoprotection mechanisms that prevent excessive mechanical deformations of the nucleus. Here, we hypothesized that dynamic topographical changes in the cellular environment can be mechanically transmitted to the nucleus and trigger nuclear mechanoprotection events. We tested this using a photoresponsive hydrogel whose surface topography can be reversibly changed on demand upon light illumination, allowing us to subject cells to recurring microscale topographical changes. RESULTS With each recurring topographical change, fibroblasts were found to increasingly compact and relocate their nuclei away from the dynamic regions of the hydrogel. These cell-scale reorganization events were accompanied by an increase of global histone acetylation and decreased methylation in cells on the dynamic topographies, resulting in a minimization of DNA strand breakage. We further found that these nuclear mechanoprotection events were mediated by both vimentin intermediate filaments and the actin cytoskeleton. CONCLUSIONS Together, these data reveal that fibroblasts actively protect their nuclei in the presence of dynamic topographical changes through cytoskeleton-mediated mechanisms. Broadly, these results stress the importance of gaining a deeper fundamental understanding of the cellular mechanoresponse under dynamically changing conditions.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Jules N Boesveld
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Ghaffari M, Shrestha A. Optimizing Stem Cell Expansion: The Role of Substrate Stiffness in Enhancing Dental Pulp Stem Cell Quiescence and Regeneration. J Endod 2025; 51:491-498. [PMID: 39814134 DOI: 10.1016/j.joen.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. METHODS Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated. Mechanical properties and porosity were characterized. Human DPSCs were cultured for 7 and 14 days. Senescence was assessed by senescence β-galactosidase activity, nuclear changes by immunofluorescence staining, and gene expression of quiescence, self-renewal, and senescence markers by reverse transcription quantitative polymerase chain reaction. NF-κB activation was analyzed through p65 nuclear translocation. Statistical analysis employed one-way analysis of variance with post-Tukey tests (P < .05). RESULTS The porous (310 ± 63 μm) 3D substrate had 50 kPa stiffness. DPSCs on 50 kPa substrates exhibited increased nuclear size and senescence in both 2D and 3D contexts. Softer 2 kPa substrates promoted quiescence, evidenced by reduced chromatin condensation and senescence, alongside upregulation of quiescence associated genes (BMI-1) and pluripotency markers (NANOG, OCT4, SOX2). NF-κB activation was observed on soft substrates, marked by nuclear translocation of p65 and upregulated NF-κB pathway genes, correlating with enhanced stemness and reduced senescence. CONCLUSIONS This study highlights the pivotal role of substrate stiffness in modulating stem cell fate. Softer substrates preserve DPSC quiescence, reduce senescence, and enhance stemness through NF-κB pathway activation, offering insights into optimizing ex vivo DPSC expansion for therapeutic applications.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
5
|
Zeng CW. Immune Cell-NSPC interactions: Friend or foe in CNS injury and repair? Differentiation 2025; 143:100855. [PMID: 40112742 DOI: 10.1016/j.diff.2025.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Neural stem/progenitor cells (NSPCs) play a crucial role in central nervous system (CNS) development, regeneration, and repair. However, their functionality and therapeutic potential are intricately modulated by interactions with immune cells, particularly macrophages and microglia. Microglia, as CNS-resident macrophages, are distinct from peripheral macrophages in their roles and characteristics, contributing to specialized functions within the CNS. Recent evidence suggests that microglia, as CNS-resident macrophages, contribute to the quality assurance of NSPCs by eliminating stressed or dysfunctional cells, yet the mechanisms underlying this process remain largely unexplored. Furthermore, macrophage polarization states, such as M1 and M2, appear to differentially influence NSPC quality, potentially impacting neurogenesis and regenerative outcomes. Identifying surface markers indicative of NSPC stress could provide a strategy for selecting optimal cells for transplantation therapies. Additionally, in vivo clonal labeling approaches may enable precise tracking of NSPC fate and their interactions with immune cells. Beyond macrophages and microglia, the roles of other immune cells, including T cells and neutrophils, particularly in injury and neurodegenerative disease contexts, in the context of CNS injury and disease are emerging areas of interest. Here, I discuss the emerging evidence supporting the interplay between the immune system and NSPCs, highlighting critical gaps in knowledge and proposing future research directions to harness immune-mediated mechanisms for optimizing neural regeneration and transplantation strategies.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Peng H, Chao Z, Wang Z, Hao X, Xi Z, Ma S, Guo X, Zhang J, Zhou Q, Qu G, Gao Y, Luo J, Wang Z, Wang J, Li L. Biomechanics in the tumor microenvironment: from biological functions to potential clinical applications. Exp Hematol Oncol 2025; 14:4. [PMID: 39799341 PMCID: PMC11724500 DOI: 10.1186/s40164-024-00591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Immune checkpoint therapies have spearheaded drug innovation over the last decade, propelling cancer treatments toward a new era of precision therapies. Nonetheless, the challenges of low response rates and prevalent drug resistance underscore the imperative for a deeper understanding of the tumor microenvironment (TME) and the pursuit of novel targets. Recent findings have revealed the profound impacts of biomechanical forces within the tumor microenvironment on immune surveillance and tumor progression in both murine models and clinical settings. Furthermore, the pharmacological or genetic manipulation of mechanical checkpoints, such as PIEZO1, DDR1, YAP/TAZ, and TRPV4, has shown remarkable potential in immune activation and eradication of tumors. In this review, we delved into the underlying biomechanical mechanisms and the resulting intricate biological meaning in the TME, focusing mainly on the extracellular matrix, the stiffness of cancer cells, and immune synapses. We also summarized the methodologies employed for biomechanical research and the potential clinical translation derived from current evidence. This comprehensive review of biomechanics will enhance the understanding of the functional role of biomechanical forces and provide basic knowledge for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaodong Hao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, 810001, Qinghai, China
| | - Guanyu Qu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Yuan Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| |
Collapse
|
7
|
Clevenger AJ, Jha A, Moore E, Raghavan SA. Manipulating immune activity of macrophages: a materials and mechanics perspective. Trends Biotechnol 2025; 43:131-144. [PMID: 39155172 PMCID: PMC11717646 DOI: 10.1016/j.tibtech.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
Collapse
Affiliation(s)
- Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
9
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
10
|
Tian Y, Guo J, Hua L, Jiang Y, Ge W, Zhang X, Cai D, Lu D, Wang B, Shen W, Sun Z, Han B. Mechanisms of imbalanced testicular homeostasis in infancy due to aberrant histone acetylation in undifferentiated spermatogonia under different concentrations of Di(2-ethylhexyl) phthalate (DEHP) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123742. [PMID: 38460586 DOI: 10.1016/j.envpol.2024.123742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), identified as an endocrine-disrupting chemical, is associated with reproductive toxicity. This association is particularly noteworthy in newborns with incompletely developed metabolic functions, as exposure to DEHP can induce enduring damage to the reproductive system, potentially influencing adult reproductive health. In this study, we continuously administered 40 μg/kg and 80 μg/kg DEHP to postnatal day 5 (PD5) mice for ten days to simulate low and high doses of DEHP exposure during infancy. Utilizing single-cell RNA sequencing (scRNA-seq), our analysis revealed that varying concentrations of DEHP exposure during infancy induced distinct DNA damage response characteristics in testicular Undifferentiated spermatogonia (Undiff SPG). Specifically, DNA damage triggered mitochondrial dysfunction, leading to acetyl-CoA content alterations. Subsequently, this disruption caused aberrations in histone acetylation patterns, ultimately resulting in apoptosis of Undiff SPG in the 40 μg/kg DEHP group and autophagy in the 80 μg/kg DEHP group. Furthermore, we found that DEHP exposure impacts the development and functionality of Sertoli and Leydig cells through the focal adhesion and PPAR signaling pathways, respectively. We also revealed that Leydig cells regulate the metabolic environment of Undiff SPG via Ptn-Sdc4 and Mdk-Sdc4 after DEHP exposure. Finally, our study provided pioneering evidence that disruptions in testicular homeostasis induced by DEHP exposure during infancy endure into adulthood. In summary, this study elucidates the molecular mechanisms through which DEHP exposure during infancy influences the development of testicular cell populations.
Collapse
Affiliation(s)
- Yu Tian
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiachen Guo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei Hua
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yinuo Jiang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Diya Cai
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Dongliang Lu
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Bin Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
11
|
Zhang C, Wang Y, Zhen Z, Li J, Su J, Wu C. mTORC1 Mediates Biphasic Mechano-Response to Orchestrate Adhesion-Dependent Cell Growth and Anoikis Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307206. [PMID: 38041494 PMCID: PMC10853740 DOI: 10.1002/advs.202307206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Cells constantly sense and respond to not only biochemical but also biomechanical changes in their microenvironment, demanding for dynamic metabolic adaptation. ECM stiffening is a hallmark of cancer aggressiveness, while survival under substrate detachment also associates with poor prognosis. Mechanisms underlying this, non-linear mechano-response of tumor cells may reveal potential double-hit targets for cancers. Here, an integrin-GSK3β-FTO-mTOR axis is reported, that can integrate stiffness sensing to ensure both the growth advantage endowed by rigid substrate and cell death resistance under matrix detachment. It is demonstrated that substrate stiffening can activate mTORC1 and elevate mTOR level through integrins and GSK3β-FTO mediated mRNA m6 A modification, promoting anabolic metabolism. Inhibition of this axis upon ECM detachment enhances autophagy, which in turn conveys resilience of tumor cells to anoikis, as it is demonstrated in human breast ductal carcinoma in situ (DCIS) and mice malignant ascites. Collectively, these results highlight the biphasic mechano-regulation of cellular metabolism, with implications in tumor growth under stiffened conditions such as fibrosis, as well as in anoikis-resistance during cancer metastasis.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Yuan Wang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Zifeng Zhen
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jiayi Li
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jing Su
- Pathology DepartmentPeking University Third HospitalBeijing100191China
| | - Congying Wu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| |
Collapse
|
12
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Liang R, Song G. Matrix stiffness-driven cancer progression and the targeted therapeutic strategy. MECHANOBIOLOGY IN MEDICINE 2023; 1:100013. [PMID: 40395641 PMCID: PMC12082158 DOI: 10.1016/j.mbm.2023.100013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 05/22/2025]
Abstract
Increased matrix stiffness is a common phenomenon in solid tumor tissue and is regulated by both tumor and mesenchymal cells. The increase in collagen and lysyl oxidase family proteins in the extracellular matrix leads to deposition, contraction, and crosslinking of the stroma, promoting increased matrix stiffness in tumors. Matrix stiffness is critical to the progression of various solid tumors. As a mechanical factor in the tumor microenvironment, matrix stiffness is involved in tumor progression, promoting biological processes such as tumor cell proliferation, invasion, metastasis, angiogenesis, drug resistance, and immune escape. Reducing tissue stiffness can slow down tumor progression. Therefore targeting matrix stiffness is a potential option for tumor therapy. This article reviews the detailed mechanisms of matrix stiffness in different malignant tumor phenotypes and potential tumor therapies targeting matrix stiffness. Understanding the role and mechanisms of matrix stiffness in tumors could provide theoretical insights into the treatment of tumors and assist in the clinical development of new drug therapies.
Collapse
Affiliation(s)
- Rui Liang
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| |
Collapse
|
14
|
Dintwa L, Hughes CE, Blain EJ. Importance of mechanical cues in regulating musculoskeletal circadian clock rhythmicity: Implications for articular cartilage. Physiol Rep 2023; 11:e15780. [PMID: 37537718 PMCID: PMC10400755 DOI: 10.14814/phy2.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The circadian clock, a collection of endogenous cellular oscillators with an approximate 24-h cycle, involves autoregulatory transcriptional/translational feedback loops to enable synchronization within the body. Circadian rhythmicity is controlled by a master clock situated in the hypothalamus; however, peripheral tissues are also under the control of autonomous clocks which are coordinated by the master clock to regulate physiological processes. Although light is the primary signal required to entrain the body to the external day, non-photic zeitgeber including exercise also entrains circadian rhythmicity. Cellular mechano-sensing is imperative for functionality of physiological systems including musculoskeletal tissues. Over the last decade, mechano-regulation of circadian rhythmicity in skeletal muscle, intervertebral disc, and bone has been demonstrated to impact tissue homeostasis. In contrast, few publications exist characterizing the influence of mechanical loading on the circadian rhythm in articular cartilage, a musculoskeletal tissue in which loading is imperative for function; importantly, a dysregulated cartilage clock contributes to development of osteoarthritis. Hence, this review summarizes the literature on mechano-regulation of circadian clocks in musculoskeletal tissues and infers on their collective importance in understanding the circadian clock and its synchronicity for articular cartilage mechanobiology.
Collapse
Affiliation(s)
- Lekau Dintwa
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
| | - Clare E. Hughes
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
| | - Emma J. Blain
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
- Biomechanics and Bioengineering Centre Versus Arthritis, School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
15
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
16
|
Zhang R, Li B, Li H. Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities. J Ophthalmol 2023; 2023:7626920. [PMID: 37521908 PMCID: PMC10386902 DOI: 10.1155/2023/7626920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The extracellular matrix (ECM) is a noncellular structure that plays an indispensable role in a series of cell life activities. Accumulating studies have demonstrated that ECM stiffness, a type of mechanical forces, exerts a pivotal influence on regulating organogenesis, tissue homeostasis, and the occurrence and development of miscellaneous diseases. Nevertheless, the role of ECM stiffness in ophthalmology is rarely discussed. In this review, we focus on describing the important role of ECM stiffness and its composition in multiple ocular structures (including cornea, retina, optic nerve, trabecular reticulum, and vitreous) from a new perspective. The abnormal changes in ECM can trigger physiological and pathological activities of the eye, suggesting that compared with different biochemical factors, the transmission and transduction of force signals triggered by mechanical cues such as ECM stiffness are also universal in different ocular cells. We expect that targeting ECM as a therapeutic approach or designing advanced ECM-based technologies will have a broader application prospect in ophthalmology.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Bo Li
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Heng Li
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| |
Collapse
|
17
|
Crocco P, Vecchie D, Gopalkrishna S, Dato S, Passarino G, Young ME, Nagareddy PR, Rose G, De Luca M. Syndecan-4 as a genetic determinant of the metabolic syndrome. Diabetol Metab Syndr 2023; 15:156. [PMID: 37461091 PMCID: PMC10351106 DOI: 10.1186/s13098-023-01132-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Syndecan-4 (SDC4) is a member of the heparan sulfate proteoglycan family of cell-surface receptors. We and others previously reported that variation in the SDC4 gene was associated with several components of the metabolic syndrome, including intra-abdominal fat, fasting glucose and triglyceride levels, and hypertension, in human cohorts. Additionally, we demonstrated that high fat diet (HFD)-induced obese female mice with a Sdc4 genetic deletion had higher visceral adiposity and a worse metabolic profile than control mice. Here, we aimed to first investigate whether the mouse Sdc4 null mutation impacts metabolic phenotypes in a sex- and diet-dependent manner. We then tested whether SDC4 polymorphisms are related to the metabolic syndrome (MetS) in humans. METHODS For the mouse experiment, Sdc4-deficient (Sdc4-/-) and wild-type (WT) mice were treated with 14-weeks of low-fat diet (LFD). Body composition, energy balance, and selected metabolic phenotypes were assessed. For the human genetic study, we used logistic regression models to test 11 SDC4 SNPs for association with the MetS and its components in a cohort of 274 (113 with MetS) elderly subjects from southern Italy. RESULTS Following the dietary intervention in mice, we observed that the effects of the Sdc4 null mutation on several phenotypes were different from those previously reported in the mice kept on an HFD. Nonetheless, LFD-fed female Sdc4-/- mice, but not males, displayed higher levels of triglycerides and lower insulin sensitivity at fasting than WT mice, as seen earlier in the HFD conditions. In the parallel human study, we found that carriers of SDC4 rs2228384 allele C and rs2072785 allele T had reduced risk of MetS. The opposite was true for carriers of the SDC4 rs1981429 allele G. Additionally, the SNPs were found related to fasting triglyceride levels and triglyceride glucose (TyG) index, a reliable indicator of insulin resistance, with sex-stratified analysis detecting the association of rs1981429 with these phenotypes only in females. CONCLUSIONS Altogether, our results suggest that SDC4 is an evolutionary conserved genetic determinant of MetS and that its genetic variation is associated with fasting triglyceride levels in a female-specific manner.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Denise Vecchie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Serena Dato
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Prabhakara R Nagareddy
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Giuseppina Rose
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, Rende, 87036, Italy.
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|