1
|
Hiruthyaswamy SP, Bose A, Upadhyay A, Raha T, Bhattacharjee S, Singha I, Ray S, Nicky Macarius NM, Viswanathan P, Deepankumar K. Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review. Bioengineered 2025; 16:2501880. [PMID: 40336219 PMCID: PMC12064066 DOI: 10.1080/21655979.2025.2501880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.
Collapse
Affiliation(s)
- Samson Prince Hiruthyaswamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Arohi Bose
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ayushi Upadhyay
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Tiasa Raha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Shangomitra Bhattacharjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Isheeta Singha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Swati Ray
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Pragasam Viswanathan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kanagavel Deepankumar
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Alad M, Yousef F, Epure LM, Lui A, Grant MP, Merle G, Eliopoulos N, Barralet J, Antoniou J, Mwale F. Unraveling Osteoarthritis: Mechanistic Insights and Emerging Therapies Targeting Pain and Inflammation. Biomolecules 2025; 15:874. [PMID: 40563514 DOI: 10.3390/biom15060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/31/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
Osteoarthritis (OA) is now widely recognized not merely as a cartilage-centric disease but as a multifactorial disorder affecting the entire joint as an organ, including the articular cartilage, subchondral bone, synovium, ligaments, menisci, and the innervating neural elements. This review explores the complex pathophysiology of OA with a focus on the emerging mechanisms of pain and inflammation that extend beyond articular cartilage degradation. Joint inflammation driven by immune activation in response to cellular stress signals promotes the release of pro-inflammatory mediators and catabolic enzymes. Key signaling pathways such as NF-κB, MAPKs, and JAK/STAT amplify these responses, and pain is sustained through peripheral and central sensitization, contributing to exacerbating symptoms even in the absence of visible joint damage. This review also integrates molecular and cellular mechanisms to highlight innovative therapies aimed at modifying both the structural damage and neurosensory drivers of pain. These approaches offer the potential to not only alleviate symptoms but also alter disease progression, signaling a move toward personalized, mechanism-based treatments. Given the intricate interactions among joint tissues, immune activation, and sensory processing, a comprehensive strategy that targets both structural degeneration and neuroinflammation is essential for the future of OA management. Emphasizing the joint as an integrated organ, we advocate for translational research linking molecular pathology with clinically meaningful outcomes.
Collapse
Affiliation(s)
- Muskan Alad
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Fajer Yousef
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Laura M Epure
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopedic Department, SMBD-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Angelina Lui
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Michael P Grant
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Geraldine Merle
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Chemical Engineering Department, Polytechnique Montréal, Montreal, QC H3T 0A3, Canada
| | - Nicoletta Eliopoulos
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Jake Barralet
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Faculty of Dentistry, McGill University, Montreal, QC H3T 1E2, Canada
| | - John Antoniou
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| | - Fackson Mwale
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
3
|
Kolesova E, Pulone S, Kostyushev D, Tasciotti E. CRISPR/Cas bioimaging: From whole body biodistribution to single-cell dynamics. Adv Drug Deliv Rev 2025:115619. [PMID: 40449852 DOI: 10.1016/j.addr.2025.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/20/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
This review explores the transformative role of CRISPR/Cas systems in optical bioimaging, emphasizing how advancements in nanoparticle (NP) technologies are revolutionizing the visualization of gene-editing processes both in vitro and in vivo. Optical imaging techniques, such as near-infrared (NIR) and fluorescence imaging, have greatly benefited from the integration of nanoformulated contrast agents, improving resolution, sensitivity, and specificity. CRISPR/Cas systems, originally developed just for gene editing, are now being coupled with these imaging modalities to enable real-time monitoring and quantitative measurements of metabolites, vitamins, proteins, nucleic acids and other entities in specific areas of the body, as well as tracking of CRISPR/Cas delivery, editing efficiency, and potential off-target effects. The development of CRISPR/Cas-loaded NPs allows for enhanced imaging and precise monitoring across multiple scales with multiplexed and multicolor imaging in complex settings, including potential in vivo diagnostics. CRISPR/Cas therapeutics as well as diagnostics are hindered by the lack of efficient and targeted delivery tools. Biomimetic NPs have emerged as promising tools for improving biocompatibility, enhancing targeting capabilities, and overcoming biological barriers, facilitating more efficient delivery and bioimaging of CRISPR/Cas systems in vivo. As the design of these NPs and delivery mechanisms improves, alongside advancements in endolysosomal escape, CRISPR/Cas-based bioimaging will continue to advance, offering unprecedented possibilities in precision medicine and theranostic applications.
Collapse
Affiliation(s)
- Ekaterina Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Sabina Pulone
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy; Università Telematica San Raffaele, Rome, Italy.
| |
Collapse
|
4
|
Dilawar M, Yu X, Jin Y, Yang J, Lin S, Liao J, Dai Q, Zhang X, Nisar MF, Chen G. Notch signaling pathway in osteogenesis, bone development, metabolism, and diseases. FASEB J 2025; 39:e70417. [PMID: 39985304 DOI: 10.1096/fj.202402545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The skeletal system provides vital importance to support organ development and functions. The Notch signaling pathway possesses well-established functions in organ development and cellular homeostasis. The Notch signaling pathway comprises five typical ligands (JAG1, JAG2, DLL1, DLL3, and DLL4), four receptors (Notch1-4), and four intracellular domains (NICD1-4). Each component of the Notch signaling pathway has been demonstrated to be fundamental in osteoblast differentiation and bone formation. The dysregulation in the Notch signaling pathway is highly linked with skeletal disorders or diseases at the developmental and postnatal stages. Recent studies have highlighted the importance of the elements of the Notch signaling pathway in the skeletal system, as well as its interaction with signaling, such as Wnt/β-catenin, BMP, TGF-β, FGF, autophagy, and hedgehog (Hh) to construct a potential gene regulatory network to orchestrate osteogenesis and ossification. Our review has provided a comprehensive summary of the Notch signaling pathway in the skeletal system, as well as the insights targeting Notch signaling for innovative potential drug discovery targets or therapeutic interventions to treat bone disorders, such as osteoporosis and osteoarthritis. An in-depth molecular mechanistic strategy to modulate the Notch signaling pathway and its associated signaling pathway will be encouraged for consideration to trigger enhanced therapeutic approaches for bone disorders by defining Notch-regulating drugs for clinical use.
Collapse
Affiliation(s)
- Muhammad Dilawar
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Yu
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuanyuan Jin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junguang Liao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Dai
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Cheng L, Wang X. Advancements in the treatment of osteochondral lesions of the talus. J Orthop Surg Res 2024; 19:827. [PMID: 39639331 PMCID: PMC11622651 DOI: 10.1186/s13018-024-05314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Osteochondral lesions of the talus (OLT) are common ankle joint pathologies, often caused by traumatic or non-traumatic factors. Due to the anatomical characteristics and limited blood supply of the talus, the spontaneous healing capacity of OLT is poor, posing challenges for clinical treatment. Traditional treatments include conservative therapy and surgical interventions, but their efficacy is limited. In recent years, significant advancements in OLT treatment have been achieved with developments in biomaterials science, cell biology, and tissue engineering. This article summarizes the latest research progress in various treatment methods, including conservative treatment, bone marrow stimulation, chondrocyte transplantation, and osteochondral grafting, and evaluates the role of biological augmentation agents such as platelet-rich plasma (PRP) and concentrated bone marrow aspirate (CBMA) in promoting cartilage repair. Additionally, the application of biological scaffold technology offers new prospects for cartilage regeneration. Although emerging therapies show potential in clinical practice, further research is needed to evaluate their long-term efficacy, indications, and safety. This article aims to provide valuable references for clinicians, researchers, and policymakers, promoting the development and refinement of OLT treatment strategies.
Collapse
Affiliation(s)
- Lianjie Cheng
- Department of Hand & Foot and Reconstructive Microsurgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xuena Wang
- Department of Nephropathy and Rheumatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China.
| |
Collapse
|
7
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Ali EAM, Smaida R, Meyer M, Ou W, Li Z, Han Z, Benkirane-Jessel N, Gottenberg JE, Hua G. iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review. Stem Cell Res Ther 2024; 15:185. [PMID: 38926793 PMCID: PMC11210138 DOI: 10.1186/s13287-024-03794-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage, an important connective tissue, provides structural support to other body tissues, and serves as a cushion against impacts throughout the body. Found at the end of the bones, cartilage decreases friction and averts bone-on-bone contact during joint movement. Therefore, defects of cartilage can result from natural wear and tear, or from traumatic events, such as injuries or sudden changes in direction during sports activities. Overtime, these cartilage defects which do not always produce immediate symptoms, could lead to severe clinical pathologies. The emergence of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine, providing a promising platform for generating various cell types for therapeutic applications. Thus, chondrocytes differentiated from iPSCs become a promising avenue for non-invasive clinical interventions for cartilage injuries and diseases. In this review, we aim to highlight the current strategies used for in vitro chondrogenic differentiation of iPSCs and to explore their multifaceted applications in disease modeling, drug screening, and personalized regenerative medicine. Achieving abundant functional iPSC-derived chondrocytes requires optimization of culture conditions, incorporating specific growth factors, and precise temporal control. Continual improvements in differentiation methods and integration of emerging genome editing, organoids, and 3D bioprinting technologies will enhance the translational applications of iPSC-derived chondrocytes. Finally, to unlock the benefits for patients suffering from cartilage diseases through iPSCs-derived technologies in chondrogenesis, automatic cell therapy manufacturing systems will not only reduce human intervention and ensure sterile processes within isolator-like platforms to minimize contamination risks, but also provide customized production processes with enhanced scalability and efficiency.
Collapse
Affiliation(s)
- Eltahir Abdelrazig Mohamed Ali
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Rana Smaida
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Morgane Meyer
- Université de Strasbourg, 67000, Strasbourg, France
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Wenxin Ou
- Université de Strasbourg, 67000, Strasbourg, France
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France
- Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Zhongchao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co, Beijing, 100176, China
| | - Nadia Benkirane-Jessel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
| | - Jacques Eric Gottenberg
- Université de Strasbourg, 67000, Strasbourg, France.
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France.
| | - Guoqiang Hua
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
9
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|