1
|
Leinert M, Irrgang T, Kempe R. A Catalytic Version of the Knorr Pyrrole Synthesis Permits Access to Pyrroles and Pyridines. J Am Chem Soc 2024; 146:32098-32104. [PMID: 39526919 DOI: 10.1021/jacs.4c13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aromatic N-heterocycles, such as pyrroles and pyridines, are important natural products and bulk and fine chemicals with numerous applications as active ingredients of pharmaceuticals and agrochemicals, as catalysts, and in materials sciences. We report here a catalytic version of the Knorr pyrrole synthesis in which simple and diversely available starting materials, such as 1,2-amino alcohols or 1,3-amino alcohols and keto esters, undergo a dehydrogenative coupling to form pyrroles and pyridines, respectively. Our reaction forms hydrogen as a collectible (and usable) byproduct and is mediated by a well-defined Mn catalyst. The synthesis of highly functionalized heterocycles and applications was demonstrated, and 35 compounds, not yet reported in the literature, were introduced.
Collapse
Affiliation(s)
- Max Leinert
- Lehrstuhl Anorganische Chemie II - Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| | - Torsten Irrgang
- Lehrstuhl Anorganische Chemie II - Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| | - Rhett Kempe
- Lehrstuhl Anorganische Chemie II - Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
2
|
Sharma S, Monga Y, Gupta A, Singh S. 2-Oxindole and related heterocycles: synthetic methodologies for their natural products and related derivatives. RSC Adv 2023; 13:14249-14267. [PMID: 37179999 PMCID: PMC10173257 DOI: 10.1039/d3ra02217j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Natural goods, medications, and pharmaceutically active substances all contain substituted oxindoles. Generally, the C-3 stereocenter of the substituents of oxindoles and their absolute arrangement have a substantial impact on the bioactivity of these substances. In this case, the desire for contemporary probe and drug-discovery programs for the synthesis of chiral compounds using desirable scaffolds with high structural diversity further drives research in this field. Also, the new synthetic techniques are generally simple to apply for the synthesis of other similar scaffolds. Herein, we review the distinct approaches for the synthesis of diverse useful oxindole scaffolds. Specifically, the research findings on the naturally existing 2-oxindole core and a variety of synthetic compounds having a 2-oxindole core are discussed. We present an overview of the construction of oxindole-based synthetic and natural products. In addition, the chemical reactivity of 2-oxindole and its related derivatives in the presence of chiral and achiral catalysts are thoroughly discussed. The data compiled herein provides broad information related to the bioactive product design, development, and applications of 2-oxindoles and the reported techniques will be helpful for the investigation of novel reactions in the future.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| | - Yukti Monga
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Ashu Gupta
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| |
Collapse
|
3
|
Cheke RS, Bagwe P, Bhange S, Kharkar PS. Biologicals and small molecules as target-specific cancer chemotherapeutic agents. MEDICINAL CHEMISTRY OF CHEMOTHERAPEUTIC AGENTS 2023:615-646. [DOI: 10.1016/b978-0-323-90575-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Hublikar M, Kadu V, Raut D, Shirame S, Anbarasu S, Al-Muhanna MK, Makam P, Bhosale R. 3-Substituted-2-oxindole derivatives: Design, synthesis and their anti-tuberculosis and radical scavenging dual-action studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
6
|
Synthesis and Characterization of Novel Copper(II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies. INORGANICS 2021. [DOI: 10.3390/inorganics10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The main goal of this work was to report the synthesis, characterization, and cytotoxicity study of a novel copper(II)-sunitinib complex, CuSun. It has been synthesized and characterized in solid state and in solution by different methods (such as DFT, FTIR, Raman, UV-vis, EPR, NMR, etc.). The solid-state molecular structure of trichlorosunitinibcopper(II), where sunitinib: N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, for short Cu(Sun)Cl3, was determined by X-ray diffraction. It crystallizes in the triclinic space group P-1 with a = 7.9061(5) Å, b = 12.412(1) Å, c = 13.7005(8) Å, α = 105.021(6)°, β = 106.744(5)°, γ = 91.749(5)°, and Z = 2 molecules per unit cell. Also, we have found π-π interactions and classic and non-classic H-bonds in the crystal structure by using Hirshfeld surface analysis. In the speciation studies, the complex has dissociated in protonated sunitinib and chlorocomplex of copper(II), according to 1HNMR, EPR, UV-vis and conductimetric analysis. Molecular docking of the complex in both, ATP binding site and allosteric site of VEGFR2 have shown no improvement in comparison to the free ligand. Besides, cytotoxicity assay on HepG2 cell line shows similar activity for complex and ligand in the range between 1–25 μM supporting the data obtained from studies in solution.
Collapse
|
7
|
Rasal NK, Jagtap SV, Bhange DS. Antimicrobial and antiproliferative study of chalcone clubbed 2,
4‐dimethylpyrrole‐3‐carboxamide
derivatives: Synthesis and in vitro evaluation. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nishant Kisan Rasal
- Department of Chemistry Baburaoji Gholap College (Affiliated to Savitribai Phule Pune University, India) Sangvi Pune India
| | - Sangeeta Vijay Jagtap
- Department of Chemistry Baburaoji Gholap College (Affiliated to Savitribai Phule Pune University, India) Sangvi Pune India
| | - Dattatraya Soma Bhange
- Department of Chemistry Baburaoji Gholap College (Affiliated to Savitribai Phule Pune University, India) Sangvi Pune India
| |
Collapse
|
8
|
AboulMagd AM, Abdelwahab NS. Analysis of sunitinib malate, a multi-targeted tyrosine kinase inhibitor: A critical review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Xia M, Lambu MR, Tatina MB, Judeh ZMA. A Practical Synthesis of Densely Functionalized Pyrroles via a Three-Component Cascade Reaction between Carbohydrates, Oxoacetonitriles, and Ammonium Acetate. J Org Chem 2020; 86:837-849. [PMID: 33326248 DOI: 10.1021/acs.joc.0c02381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A practical three-component reaction between unactivated carbohydrates, oxoacetonitriles, and ammonium acetate gave densely functionalized pyrroles in 75-96% yields. Disaccharides afforded novel pyrrolo-glycosides. This metal-free, Et3N-catalyzed cascade reaction proceeded with exclusive chemo-, regio-, and stereoselectivities and showed a wide substrate scope with high atom economy. It also proceeded successfully at a 2 g scale, demonstrating potential for large-scale synthesis. The functional groups on the pyrroles permit easy transformation to other handles for the construction of more complex structures. The reaction proceeded through a cascade mechanism involving several intermediates identified by mass spectrometric analysis. This work has great potential for the sustainable production of densely functionalized pyrroles from cheap and widely available carbohydrates and represents a key advancement in the sustainable synthesis of these ubiquitous heterocycles.
Collapse
Affiliation(s)
- Mengxin Xia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459
| | - Mallikharjuna Rao Lambu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459
| | - Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459
| |
Collapse
|
10
|
Zhou Q, Jia L, Du F, Dong X, Sun W, Wang L, Chen G. Design, synthesis and biological activities of pyrrole-3-carboxamide derivatives as EZH2 (enhancer of zeste homologue 2) inhibitors and anticancer agents. NEW J CHEM 2020; 44:2247-2255. [DOI: 10.1039/c9nj04713a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A novel series of pyrrole-3-carboxamides targeting EZH2 have been designed and synthesized. The structure–activity relationships were summarized by combining within vitrobiological activity assay and docking results.
Collapse
Affiliation(s)
- Qifan Zhou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Lina Jia
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Fangyu Du
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xiaoyu Dong
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Wanyu Sun
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Lihui Wang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
11
|
A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160:65-72. [DOI: 10.1016/j.colsurfb.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
12
|
Garg P, Jadhav SD, Singh A. Oxidation State Dichotomy in Copper-Catalyzed Intramolecular Cyclization of α-Diazoanilides: An Integrated Synthetic Platform for Oxindoles and Isatins Enabled by Oxygenase-Type Reactivity. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Parul Garg
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| | - Santosh D. Jadhav
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| | - Anand Singh
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| |
Collapse
|
13
|
Li Q, Qian Y. A red-emissive oxadiazol-triphenylamine BODIPY dye: synthesis, aggregation-induced fluorescence enhancement and cell imaging. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
15
|
Li Q, Qian Y. Aggregation-induced emission enhancement and cell imaging of a novel (carbazol-N-yl)triphenylamine–BODIPY. NEW J CHEM 2016. [DOI: 10.1039/c6nj01495j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The AIEE fluorogen BCPA–BODIPY emits strong red fluorescence and shows a good uptake by MCF-7 cells.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|