1
|
Mesto E, Okio CKYA, Lemus MA, Schingaro E. {[( E)-(1,3-Benzodioxol-5-yl)methyl-idene]amino}thio-urea. Acta Crystallogr E Crystallogr Commun 2024; 80:125-127. [PMID: 38333137 PMCID: PMC10848994 DOI: 10.1107/s2056989024000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thio-semicarbazone groups. The supra-molecular organization primarily arises from hydrogen bonding and π-π stacking inter-actions, leading to distinctive dimeric formations.
Collapse
Affiliation(s)
- Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali., Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 701125 Bari, Italy
| | - Coco K. Y. A. Okio
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
| | - Maria Alejandra Lemus
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali., Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 701125 Bari, Italy
| |
Collapse
|
2
|
Gómez E, Galván-Hidalgo JM, Pérez-Cuéllar G, Huerta-Landa KA, González-Hernández A, Gómez-García O, Andrade-Pavón D, Ramírez-Apan T, Rodríguez Hernández KD, Hernández S, Cano-Sánchez P, Gómez-Velasco H. New Organotin (IV) Compounds Derived from Dehydroacetic Acid and Thiosemicarbazides: Synthesis, Rational Design, Cytotoxic Evaluation, and Molecular Docking Simulation. Bioinorg Chem Appl 2023; 2023:7901843. [PMID: 37920233 PMCID: PMC10620030 DOI: 10.1155/2023/7901843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Organotin complexes were prepared through a one-pot reaction with three components by reacting thiosemicarbazide or 4-methyl-3-thiosemicarbazide or 4-phenylthiosemicarbazide, dehydroacetic acid (DHA) and dibutyl, diphenyl, dicyclohexyl, and bis[(trimethylsilyl)methyl]tin(IV) oxides; all complexes were characterized by infrared (IR), ultraviolet-visible (UV-vis), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. The 119Sn NMR revealed chemical shifts corresponding to a pentacoordinated environment in solution. The X-ray crystallography of the two complexes evidenced the formation of monomeric complexes with a pentacoordinated geometry around tin via three donor atoms from the ligand, the sulfur of the thiol, the nitrogen of the imine group, and the oxygen of the pyran ring. The geometries of the five-coordinated complexes 3a (Bu2SnL3), 3c (Ph2SnL3), and 3d (Cy2SnL3) acid were intermediate between square pyramidal and trigonal bipyramidal, and complex 1a (Bu2SnL1) adopted a bipyramidal trigonal geometry (BPT). The sulforhodamine B assay assessed the cytotoxicity of organotin(IV) complexes against the MDA-MB-231 and MCF-7 (human mammary adenocarcinoma) cell lines and one normal COS-7 (African green monkey kidney fibroblast). The IC50 values evidenced a significant antiproliferative effect on cancer cells; the complexes were more potent than the positive cisplatin control and the corresponding ligands, dehydroacetic acid thiosemicarbazone (L1), dehydroacetic acid-N(4)-methylthiosemicarbazone (L2), and dehydroacetic acid-N(4)-phenylthiosemicarbazone (L3). The IC50 values also indicated that the organotin(IV) complexes were more cytotoxic against the triple-negative breast cell line MDA-MB-231 than MCF-7, inducing significant morphological alterations. The interactions of organotin(IV) 1c (Ph2SnL1), 1d (Cy2SnL1), and 1e (((CH3)3SiCH2)2SnL1) were evaluated with ss-DNA by fluorescence; intensity changes of the fluorescence were indicative of the displacement of ethidium bromide (EB), confirming the interaction of the organotin(IV) complexes with ss-DNA; the results showed a DNA binding affinity. The thermodynamic parameters obtained through isothermal titration calorimetry showed that the interaction of 1c (Ph2SnL1), with ss-ADN, was exothermic. Molecular docking studies also demonstrated that the organotin(IV) complexes were intercalated in DNA by conventional hydrogen bonds, carbon-hydrogen bonds, and π-alkyl interactions. These complexes furthermore showed a greater affinity towards DNA than cisplatin.
Collapse
Affiliation(s)
- Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - José Miguel Galván-Hidalgo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Guillermo Pérez-Cuéllar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Karoline Alondra Huerta-Landa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Arturo González-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Omar Gómez-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás 11340, Ciudad de México, Mexico
| | - Dulce Andrade-Pavón
- Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás 11340, Ciudad de México, Mexico
- Departamento Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo 07738, Ciudad de México, Mexico
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Karla Daniela Rodríguez Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Simón Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| |
Collapse
|
3
|
Boora A, Devi J, Rom T, Paul AK. Synthesis, characterization, single crystal structure, biological evaluation of ONO donor hydrazones and their diorganotin(IV) complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Synthesis, Structural Investigations, and In Vitro/In Silico Bioactivities of Flavonoid Substituted Biguanide: A Novel Schiff Base and Its Diorganotin (IV) Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248874. [PMID: 36558007 PMCID: PMC9783859 DOI: 10.3390/molecules27248874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand-receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.
Collapse
|
5
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
6
|
New Complexes of organotin(IV) and organosilicon(IV) with 2-{(3,4-dimethoxybenzylidene)amino}-benzenethiol: Synthesis, spectral, theoretical, antibacterial, docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Diorganotin(IV) complexes derived from thiazole Schiff bases: synthesis, characterization, antimicrobial and cytotoxic studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ghatpande N, Phal D, Karpoormath R, Soliman M, Jadhav J, Choudhari P, Shaikh MM. Synthesis, Biological Evaluation and Molecular Docking of Novel N-Acyl/Aroyl Spiro[Chromane-2,4′-Piperidin]-4(3 H)-One as Potent Anti-Microbial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1915807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nitin Ghatpande
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Deepak Phal
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Mahmoud Soliman
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | | | - Prafulla Choudhari
- Pharmaceutical Chemistry, Bharati Vidyapeeth University Institute of Management Kolhapur, Kolhapur, Maharashtra, India
| | - Mahidansha M. Shaikh
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
- Unique Med Chem Laboratories, L-64, Chincholli MIDC, Solapur, Solapur, Maharashtra, India
| |
Collapse
|
9
|
Devi J, Yadav J, Lal K, Kumar N, Paul AK, Kumar D, Dutta PP, Jindal DK. Design, synthesis, crystal structure, molecular docking studies of some diorganotin(IV) complexes derived from the piperonylic hydrazide Schiff base ligands as cytotoxic agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
|
11
|
Yusof ENM, Kwong HC, Karunakaran T, Ravoof TBSA, Tiekink ERT. Di- n-but-yl[ N'-(3-meth-oxy-2-oxidobenzyl-idene)- N-phenyl-carbamohydrazono-thio-ato]tin(IV): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr E Crystallogr Commun 2021; 77:286-293. [PMID: 33953953 PMCID: PMC8061100 DOI: 10.1107/s2056989021001870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/10/2022]
Abstract
The title diorganotin Schiff base derivative, [Sn(C4H9)2(C15H13N3O2S)], features a penta-coordinated tin centre defined by the N,O,S-donor atoms of the di-anionic Schiff base ligand and two methyl-ene-C atoms of the n-butyl substituents. The resultant C2NOS donor set defines a geometry inter-mediate between trigonal-bipyramidal and square-pyramidal. In the crystal, amine-N-H⋯O(meth-oxy) hydrogen bonding is found in a helical, supra-molecular chain propagating along the b-axis direction. The chains are assembled into a layer parallel to (01) with methyl-ene-C-H⋯π(phen-yl) inter-actions prominent; layers stack without directional inter-actions between them. The analysis of the calculated Hirshfeld surface showed the presence of weak methyl-ene-C-H⋯π(phen-yl) inter-actions and short H⋯H contacts in the inter-layer region. Consistent with the nature of the identified contacts, the stabilization of the crystal is dominated by the dispersion energy term.
Collapse
Affiliation(s)
- Enis Nadia Md Yusof
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Huey Chong Kwong
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Thahira B. S. A. Ravoof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul, Ehsan, Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
12
|
Tin(IV) compounds of tridentate thiosemicarbazone Schiff bases: Synthesis, characterization, in-silico analysis and in vitro cytotoxicity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Selective cytotoxicity of organotin(IV) compounds with 2,3-dihydroxybenzyldithiocarbazate Schiff bases. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
|
15
|
Two Cu(I) complexes based on semicarbazone ligand: synthesis, crystal structure, Hirshfeld surface and anticancer activity evaluation against human cell lines. Struct Chem 2019. [DOI: 10.1007/s11224-019-01379-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Devi J, Devi S, Yadav J, Kumar A. Synthesis, Biological Activity and QSAR Studies of Organotin(IV) and Organosilicon(IV) Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jai Devi
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Suman Devi
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Jyoti Yadav
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Ashwani Kumar
- Department of Pharmaceutical SciencesGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| |
Collapse
|
17
|
Devi J, Yadav J, Singh N. Synthesis, characterisation, in vitro antimicrobial, antioxidant and anti-inflammatory activities of diorganotin(IV) complexes derived from salicylaldehyde Schiff bases. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03830-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Fang Y, Wang YT, Zhao M, Lu YL, Li MX, Zhang YH. Bismuth(III) and diorganotin(IV) complexes of bis(2-acetylpyridine) thiocarbonohydrazone: Synthesis, characterization, and apoptosis mechanism of action in vitro. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Salam MA, Alam M, Sarker S, Rahman MM. Synthesis, spectroscopic characterization, crystal structure, and anti-bacterial activity of diorganotin(IV) complexes with 5-bromo-2-hydroxybenzaldehyde-N(4)-ethylthiosemicarbazone. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1468888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M. A. Salam
- Bangladesh Petroleum Exploration and Production Co. Ltd. (BAPEX), Dhaka, Bangladesh
| | - Mahbubul Alam
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sohug Sarker
- Department of Chemistry, Netrakona Government College, Netrakona, Bangladesh
| | - Mohammed M. Rahman
- Faculty of Science, Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Sultana K, Zaib S, Hassan Khan NU, Khan I, Shahid K, Simpson J, Iqbal J. Exploiting the potential of aryl acetamide derived Zn(ii) complexes in medicinal chemistry: synthesis, structural analysis, assessment of biological profile and molecular docking studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj03531g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports an unprecedented series of aryl acetamide derived Zn(ii) complexes as frontline enzyme inhibitors as well as anticancer and anti-parasitic agents.
Collapse
Affiliation(s)
| | - Sumera Zaib
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | | | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Khadija Shahid
- Riphah Institute of Pharmaceutical Sciences
- Riphah International University
- Islamabad-44000
- Pakistan
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|