1
|
Ray PK, Shabana K, Salahuddin, Kumar R. Synthetic Strategies of Thiazolidine-2,4-dione Derivatives for the Development of New Anti-diabetic Agents: Compressive Review. Curr Top Med Chem 2024; 24:885-928. [PMID: 38500288 DOI: 10.2174/0115680266284283240304071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Thiazolidine-2,4-dione (2,4-TZD) is a flexible pharmacophore and a privileged platform and contains a five-membered ring with a 2-oxygen atom with double bond 2,4- position and one nitrogen atom as well as sulphur containing in the heterocyclic compound. A famous electron-rich nitrogen transporter combines invigorating electronic properties with the prospective for elemental applications. Thiazolidine-2,4-dione analogues have been synthesized using a variety of methods, all of which have shown to have a strong biological effect. OBJECTIVES The study of the biological activity of Thiazolidine-2,4-dione derivatives has been a fascinating field of pharmaceutical chemistry and has many purposes. This derivative described in the literature between 1995 to 2023 was the focus of this study. Thiazolidine-2,4-diones have been discussed in terms of their introduction, general method, synthetic scheme and antidiabetic significance in the current review. CONCLUSION Thiazolidine-2,4-diones are well-known heterocyclic compounds. The synthesis of Thiazolidine-2,4-diones has been described using a variety of methods. Antidiabetic activity has been discovered in several Thiazolidine-2,4-dione derivatives, which enhance further research. The use of Thiazolidine-2,4-diones to treat antidiabetics has piqued researchers' interest in learning more about thiazolidine-2,4-diones.
Collapse
Affiliation(s)
- Pushkar Kumar Ray
- Department of Pharmacy, Harlal Institute of Management and Technology (HIMT), Plot no-8, Knowledge Park-1, Greater Noida, Uttar Pradesh, 201310, India
| | - Km Shabana
- Department of Pharmacy, Harlal Institute of Management and Technology (HIMT), Plot no-8, Knowledge Park-1, Greater Noida, Uttar Pradesh, 201310, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, 201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, 201306, India
| |
Collapse
|
2
|
Ivankin DI, Kornienko TE, Mikhailova MA, Dyrkheeva NS, Zakharenko AL, Achara C, Reynisson J, Golyshev VM, Luzina OA, Volcho KP, Salakhutdinov NF, Lavrik OI. Novel TDP1 Inhibitors: Disubstituted Thiazolidine-2,4-Diones Containing Monoterpene Moieties. Int J Mol Sci 2023; 24:ijms24043834. [PMID: 36835244 PMCID: PMC9964680 DOI: 10.3390/ijms24043834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 μM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 μM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.
Collapse
Affiliation(s)
- Dmitry I. Ivankin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Tatyana E. Kornienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Marina A. Mikhailova
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Chigozie Achara
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BC, UK
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BC, UK
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga A. Luzina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
- Correspondence:
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Mishra GP, Sharma R, Jain M, Bandyopadhyay D. Syntheses, biological evaluation of some novel substituted benzoic acid derivatives bearing hydrazone as linker. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Borisova MS, Ivankin DI, Sokolov DN, Luzina OA, Rybalova TV, Tolstikova TG, Salakhutdinov NF. Synthesis, antiulcerative, and anti-inflammatory activities of new campholenic derivatives-1,3-thiazolidin-4-ones, 1,3-thiazolidine-2,4-diones, and 1,3-thiazinan-4-ones. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Jangam SS, Wankhede SB. Synthesis, Molecular Docking, and Biological Evaluation of the New Hybrids of 4-Thiazolidinone and 4(3H)-Quinazolinone Against Streptozotocin Induced Diabetic Rats. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219050256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|