1
|
Verma S, Lal S, Narang R. Expanding potential of quinoline hydrazide/hydrazone derivatives as anticancer agents. Future Med Chem 2024; 16:1283-1286. [PMID: 38934366 PMCID: PMC11318745 DOI: 10.1080/17568919.2024.2366150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| |
Collapse
|
2
|
Żesławska E, Zakrzewski R, Nowicki A, Korona-Głowniak I, Lyčka A, Kania A, Zborowski KK, Suder P, Skórska-Stania A, Tejchman W. Synthesis, Crystal Structures, Lipophilic Properties and Antimicrobial Activity of 5-Pyridylmethylidene-3-rhodanine-carboxyalkyl Acids Derivatives. Molecules 2022; 27:molecules27133975. [PMID: 35807224 PMCID: PMC9268742 DOI: 10.3390/molecules27133975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The constant increase in the resistance of pathogenic bacteria to the commonly used drugs so far makes it necessary to search for new substances with antibacterial activity. Taking up this challenge, we obtained a series of rhodanine-3-carboxyalkyl acid derivatives containing 2- or 3- or 4-pyridinyl moiety at the C-5 position. These compounds were tested for their antibacterial and antifungal activities. They showed activity against Gram-positive bacteria while they were inactive against Gram-negative bacteria and yeast. In order to explain the relationship between the activity of the compounds and their structure, for selected derivatives crystal structures were determined using the X-ray diffraction method. Modeling of the isosurface of electron density was also performed. For all tested compounds their lipophilicity was determined by the RP-TLC method and by calculation methods. On the basis of the carried-out research, it was found that the derivatives with 1.5 N···S electrostatics interactions between the nitrogen atom in the pyridine moiety and the sulfur atom in the rhodanine system showed the highest biological activity.
Collapse
Affiliation(s)
- Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
| | - Robert Zakrzewski
- Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland; (R.Z.); (A.N.)
| | - Arkadiusz Nowicki
- Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland; (R.Z.); (A.N.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Antonín Lyčka
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové III, Czech Republic;
| | - Agnieszka Kania
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
| | | | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland;
| | - Agnieszka Skórska-Stania
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland; (K.K.Z.); (A.S.-S.)
| | - Waldemar Tejchman
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
- Correspondence:
| |
Collapse
|
3
|
Campos JC, Campos PT, Pedra NS, Bona NP, Soares MS, Souza PO, Braganhol E, Cunico W, Siqueira GM. Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma. Med Chem 2021; 18:452-462. [PMID: 34365956 DOI: 10.2174/1573406417666210806094543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/11/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
AIMS The purpose of our study was to explore the molecular hybridization between 2-imino-4-thizolidione and piridinic scaffolds and its potential antitumor activity. BACKGROUND Glioblastoma is the most aggressive glioma tumor clinically diagnosed malignant and highly recurrent primary brain tumor type. The standard of treatment for a glioblastoma is surgery, followed by radiation and chemotherapy using temozolomide. However, the chemoresistance has become the main barrier to treatment success. 2-imino-4-thiazolidinones are an important class of heterocyclic compounds that feature anticancer activity; however the antiglioblastoma activity is yet to be explored. OBJECTIVE To synthesize and characterize a series of novel 2-imino-4-thiazolidinones and evaluate their antiglioblastoma activity. METHOD The 2-imino-4-thiazolidinone (5a-p) was synthesized according to the literature with modifications. Compounds were identified and characterized using spectroscopic analysis and X-ray diffraction. The antitumor activity was analyzed by 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) assay both in primary astrocyte and glioma (C6). Apoptosis and cell cycle phase were determined by flow cytometry analysis. The expression of caspase-3/7 was measured by luminescence assay. Oxidative stress parameters as: determination of reactive oxygen species (ROS), superoxide dismutase (SOD) activity, catalase (CAT) activity and total sulfhydryl content quantification were analyzed by colorimetric assays according to literature. RESULTS Among sixteen synthesized compounds, three displayed potent antitumor activities against tested glioblastoma cell line showed IC50 values well below the standard drug temozolomide. Therefore, compounds 5a, 5l and 5p were evaluated using cell cycle and death analysis, due to potent toxicity (2.17±1.17, 6.24±0.59, 2.93±1.12µM, respectively) in C6 cell line. The mechanism of action studies demonstrated that 5a and 5l induced apoptosis significantly increase the percentage of cells in Sub-G1 phase in the absence of necrosis. Consistent with these results, caspase-3/7 assay revealed that 5l presents pro-apoptotic activity due to the significant stimulation of caspases-3/7. Moreover, 5a, 5l and 5p increased antioxidant defense and decreased reactive oxygen species (ROS) production. CONCLUSION The compounds were synthesized with good yield and three of these presented (5a, 5l and 5p) good cytotoxicity against C6 cell line. Both affected cell cycle distribution via arresting more C6 cell line at Sub-G1 phase promoting apoptosis. Furthermore, 5a, 5l and 5p modulated redox status. These findings suggest that these compounds can be considered as promising lead molecules for further development of potential antitumor agents.
Collapse
Affiliation(s)
- José Coan Campos
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Patrick Teixeira Campos
- Laboratório de Química Orgânica Sintética, Estrutural e Computacional (LaQuiOSEC), Instituto Federal Sul-rio-grandense, Campus Pelotas, Pelotas, RS. Brazil
| | - Nathalia Stark Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Natália Pontes Bona
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Mayara Sandrielly Soares
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Priscila Oliveira Souza
- Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS. Brazil
| | - Elizandra Braganhol
- Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS. Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Geonir Machado Siqueira
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| |
Collapse
|
4
|
Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2020; 30:127592. [PMID: 33010448 DOI: 10.1016/j.bmcl.2020.127592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
In search of new active molecules against MCF-7, A549 and HepG2, tetrazole based pyrazoline and isoxazoline derivatives under both conventional and ultrasonic irradiation method were designed and efficiently synthesized. Structures of newly synthesized compounds 5a-h and 6a-h were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Several derivatives were found to be excellent cytotoxic against MCF-7, A549 and HepG2 cell lines characterized by lower IC50 values (0.78-3.12 µg/mL). Compounds 5b and 5c demonstrated an antiproliferative effect comparable to that of CA-4. Western blot analysis revealed that, reported compounds accumulate more tubulin in the soluble fraction. Docking studies suggested that, binding of these compounds mimics at the colchicine site of tubulin. In vitro study revealed that the tetrazole based pyrazolines and isoxazolines may possess ideal structural requirements for further development of novel therapeutic agents.
Collapse
|
5
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|