1
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
2
|
Liao X, Zhang C, Nan C, Lv Y, Fan Z, Hu L. Phenol driven changes onto MnO 2 surface for efficient removal of methyl parathion: The role of adsorption. CHEMOSPHERE 2021; 269:128695. [PMID: 33121815 DOI: 10.1016/j.chemosphere.2020.128695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Manganese oxides (MnO2), important environmental oxides, have drawn significant attention in areas such as detoxification of micro-hazardous organic contaminants with electron-donating functional groups such as -OH. However, studies on whether these oxidized processes might further impact the fate of some esters like organophosphorus pesticide (OPPs) remain poorly understood. Herein, we propose a new mechanism involved in the enhanced removal of methyl parathion in mixtures of MnO2 and phenol. Specifically, the removal of methyl parathion (up to 73.7%) was significantly higher for a binary system than for MnO2 alone (approximately 9.3%) and was primarily due to adsorption rather than degradation. The extent of methyl parathion adsorption was dependent significantly on pH, reactant loading and metal ion co-solutes (such as Ca2+, Mg2+, Fe3+ and Mn2+). Both spectroscopic (FT-IR, SEM-EDX and XPS) and chromatographic (LC/HRMS) analyses showed that the remarkable increase in the number of organics (e.g., polymers) onto the MnO2 surface dominated methyl parathion adsorption via hydrogen bonding, n-π and π-π interactions, van der Waals forces and pore-diffusion. The results from this study provided evidence for the role of manganese oxides in adsorption of methyl parathion in soil-aquatic environments involving phenolic compounds.
Collapse
Affiliation(s)
- Xiaoping Liao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Chao Nan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - You Lv
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zenghui Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lisong Hu
- School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Kanan SM, Moyet MA. Fabricated metal zeolites as photocatalysts for the degradation of organic pollutants. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04416-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Kan H, Wang T, Yu J, Qu G, Zhang P, Jia H, Sun H. Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123361. [PMID: 32645541 DOI: 10.1016/j.jhazmat.2020.123361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Contaminated sites from pesticide industry have attracted global concern due to the characteristics of organic pollution with high concentrations and complete loss of habitat conditions. Remediation of organophosphorus pesticide polluted soil using microwave-activated persulfate (MW/PS) oxidation was investigated in this study, with parathion as the representative pesticide. Approximately 90 % of parathion was degraded after 90 min of MW/PS oxidation treatment, which was superior to those by single PS or MW treatment. Relatively greater performances for parathion degradation were obtained in a relatively larger PS dosage, higher microwave temperature, and lower organic matter content. Appropriate soil moisture favored parathion degradation in soil. SO4-, OH, O2-, and 1O2 generated in the MW/PS system all contributed to parathion degradation. Multiple spectroscopy analyses indicated that PO and PS bonds in parathion were destroyed after MW/PS oxidation, accompanied by generation of hydroxylated and carbonylated byproducts. The soil safety after parathion degradation was assessed via model prediction. Furthermore, MW/PS oxidation also exhibited great performance for degradation of other organophosphorus pesticides, including ethion, phorate, and terbufos.
Collapse
Affiliation(s)
- Hongshuai Kan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Jinxian Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
5
|
Abukhadra MR, El-Sherbeeny AM, El-Meligy MA, Luqman M. Insight into carbohydrate polymers (chitosan and 2- hydroxyethyl methacrylate/methyl methacrylate) intercalated bentonite-based nanocomposites as multifunctional and environmental adsorbents for methyl parathion pesticide. Int J Biol Macromol 2020; 167:335-344. [PMID: 33278429 DOI: 10.1016/j.ijbiomac.2020.11.209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Two-hybrid products of bentonite intercalated carbohydrate polymers (chitosan (BE.P.CH) and 2- hydroxyethyl methacrylate/methyl methacrylate copolymer (BE/P.HEMA/MMA)) were synthesized as enhanced adsorbents for methyl parathion pesticide (MPP). The intercalation processes induced the affinity and the capacity of bentonite achieving the best value at pH 8. The maximum MPP adsorption capacities of BE (287.3 mg/g), BE/P.CH (634.5 mg/g), and BE/P.HEMA-MMA (868.5 mg/g) obtained after 300 min, 240 min, and 360 min, respectively. The kinetic properties of BE follow the Pseudo-second order behavior (R2 = 0.93) while BE/P.CH and BE/P.HEMA-MMA are of Pseudo-First order behavior (R2 > 0.92). Based on the equilibrium studies, the three products are of Freundlich isotherm behavior (R2 > 0.9) and the uptake is of multilayer forms on heterogeneous surfaces. The Gaussian energies (>8 KJ/mol), Gibbs free energies (>20 to <40 KJ/mol), and enthalpies (>40 to <80 KJ/mol) give an indication about adsorption mechanism involved chemical and physical reactions. The thermodynamics of MPP uptake reactions by the three products are of endothermic and spontaneous behaviors. The MPP uptake in the presence of NH+4, PO4-3, Mn+2, and Pb+2 competitive ions reflects enhancement in the affinity of BE after the integration between it and the selected polymers.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Mohammed A El-Meligy
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Monis Luqman
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
6
|
Rizo J, Díaz D, Reyes-Trejo B, Arellano-Jiménez MJ. Cu 2O nanoparticles for the degradation of methyl parathion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1546-1555. [PMID: 33133999 PMCID: PMC7590623 DOI: 10.3762/bjnano.11.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Methyl parathion (MP) is one of the most neurotoxic pesticides. An inexpensive and reliable one-step degradation method of MP was achieved through an aqueous suspension of copper(I) oxide nanoparticles (NPs). Three different NPs sizes (16, 29 and 45 nm), determined with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), were synthesized using a modified Benedict's reagent. 1H nuclear magnetic resonance (NMR) results show that the hydrolytic degradation of MP leads to the formation of 4-nitrophenol (4-NPh) as the main product. While the P=S bond of MP becomes P=O, confirmed by 31P NMR. Although Cu2O is a widely known photocatalyst, the degradation of methyl parathion was associated to the surface basicity of Cu2O NPs. Indirect evidence for the basicity of Cu2O NPs was achieved through UV-vis absorption of 4-NPh. Likewise, it was shown that the surface basicity increases with decreasing nanoparticle size. The presence of CuCO3 on the surface of Cu2O, identified using X-ray photoelectron spectroscopy (XPS), passivates its surface and consequently diminishes the degradation of MP.
Collapse
Affiliation(s)
- Juan Rizo
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, México
| | - David Díaz
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, México
| | - Benito Reyes-Trejo
- Laboratorio de Productos Naturales, Área de Química, Universidad Autónoma Chapingo, Texcoco 56230, México
| | | |
Collapse
|
7
|
Jain M, Mudhoo A, Ramasamy DL, Najafi M, Usman M, Zhu R, Kumar G, Shobana S, Garg VK, Sillanpää M. Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and agrochemicals) by nanostructures: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34862-34905. [PMID: 32656757 DOI: 10.1007/s11356-020-09635-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
This review discusses a fresh pool of research findings reported on the multiple roles played by metal-based, magnetic, graphene-type, chitosan-derived, and sonicated nanoparticles in the treatment of pharmaceutical- and agrochemical-contaminated waters. Some main points from this review are as follows: (i) there is an extensive number of nanoparticles with diverse physicochemical and morphological properties which have been synthesized and then assessed in their respective roles in the degradation and mineralization of many pharmaceuticals and agrochemicals, (ii) the exceptional removal efficiencies of graphene-based nanomaterials for different pharmaceuticals and agrochemicals molecules support arguably well a high potential of these nanomaterials for futuristic applications in remediating water pollution issues, (iii) the need for specific surface modifications and functionalization of parent nanostructures and the design of economically feasible production methods of such tunable nanomaterials tend to hinder their widespread applicability at this stage, (iv) supplementary research is also required to comprehensively elucidate the life cycle ecotoxicity characteristics and behaviors of each type of engineered nanostructures seeded for remediation of pharmaceuticals and agrochemicals in real contaminated media, and last but not the least, (v) real wastewaters are extremely complex in composition due to the mix of inorganic and organic species in different concentrations, and the presence of such mixed species have different radical scavenging effects on the sonocatalytic degradation and mineralization of pharmaceuticals and agrochemicals. Moreover, the formulation of viable full-scale implementation strategies and reactor configurations which can use multifunctional nanostructures for the effective remediation of pharmaceuticals and agrochemicals remains a major area of further research.
Collapse
Affiliation(s)
- Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, 210001, India
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Mahsa Najafi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, 123, Muscat, Oman
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry & Research Centre, Mohamed Sathak Engineering College, Ramanathapuram, Tamil Nadu, India
| | - Vinod Kumar Garg
- Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia.
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
8
|
Aghaei M, Sajjadi S, Keihan AH. Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11541-11553. [PMID: 31965505 DOI: 10.1007/s11356-020-07680-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Semiconductor photocatalysis is an effective method used to degrade organophosphorus compounds. Here, the potential of a commonly mixed oxide semiconductor, ZnO/CuO, has been examined to degrade methyl parathion. Sono-coprecipitation method was used to provide ZnO/CuO nanocomposites, and it was applied to photocatalytic and sono-photocatalytic degradation of methyl parathion under solar light irradiation. Powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), the Brunauer-Emmett-Teller (BET) surface area, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) were used to characterize the synthesized samples. The optimal experimental conditions such as ZnO/CuO photocatalyst 90:10 M ratios, the initial concentration of 20 mg/L parathion, 1 g/L photocatalyst loading, no compressed air sparging, pH of 8, and ultrasonic power (60 W and 80 kHz) were used to degrade the parathion effectively. The parathion was fully (100% removal) degraded after 60 min sono-photoirradiation in the optimal experimental conditions. A real water sample was used to examine the ability of the ZnO/CuO photocatalyst 90:10 to remove the parathion in the water-soluble ions. Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sharareh Sajjadi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mahar AM, Balouch A, Talpur FN, Abdullah, Panah P, Kumar R, Kumar A, Pato AH, Mal D, Kumar S, Umar AA. Fabrication of Pt-Pd@ITO grown heterogeneous nanocatalyst as efficient remediator for toxic methyl parathion in aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9970-9978. [PMID: 31933082 DOI: 10.1007/s11356-019-07548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
Collapse
Affiliation(s)
- Ali Muhammad Mahar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan.
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Abdullah
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Pirah Panah
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Raj Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Ameet Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Abdul Hameed Pato
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Dadu Mal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Sagar Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, amshoro, Pakistan
| | - Akrajas Ali Umar
- Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
10
|
Zheng A, Shen C, Tang Q, Gong CB, Chow CF. Catalytic Chemosensing Assay for Selective Detection of Methyl Parathion Organophosphate Pesticide. Chemistry 2019; 25:9643-9649. [PMID: 31017704 DOI: 10.1002/chem.201901656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 11/11/2022]
Abstract
Herein, a catalytic chemosensing assay (CCA), based on a bimetallic complex, [RuII (bpy)2 (CN)2 ]2 (CuI I)2 (bpy=2,2'-bipyridine), is described. This complex integrates a task-specific catalyst (CuI -catalyst) and a signaling unit ([RuII (bpy)2 (CN)2 ]) to specifically hydrolyze methyl parathion, a highly toxic organophosphate (OP) pesticide. The bimetallic complex catalyzed the hydrolysis of the phosphate ester to generate o,o-dimethyl thiophosphate (DTP) anion and 4-nitrophenolate. Intrinsically, 4-nitrophenolate absorbed UV/Vis light at λmax =400 nm, creating the first level of the chemosensing signal. DTP interacted with the original complex to displace the chromophore, [RuII (bpy)2 (CN)2 ], which was monitored by spectrofluorometry; this was classified as the second level of chemosensing signal. By integrating both spectroscopic and spectrofluorometric signals with a simple AND logic gate, only methyl parathion was able to provide a positive response. Other aromatic and aliphatic OP pesticides (diazinon, fenthion, meviphos, terbufos, and phosalone) and 4-nitrophenyl acetate provided negative responses. Furthermore, owing to the metal-catalyzed hydrolysis of methyl parathion, the CCA system led to the detoxification of the pesticide. The CCA system also demonstrated its catalytic chemosensing properties in the detection of methyl parathion in real samples, including tap water, river water, and underground water.
Collapse
Affiliation(s)
- Anxun Zheng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Southwest University, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of, Chemistry and Chemical Engineering, Chong Qing, P. R. China
| | - Chang Shen
- Centre for Education in Environmental Sustainability, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, P. R. China
| | - Qian Tang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Southwest University, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of, Chemistry and Chemical Engineering, Chong Qing, P. R. China
| | - Cheng-Bin Gong
- Department of Science and Environmental Studies, The Education University of Hong Kong, Southwest University, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of, Chemistry and Chemical Engineering, Chong Qing, P. R. China
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, Southwest University, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of, Chemistry and Chemical Engineering, Chong Qing, P. R. China
| |
Collapse
|
11
|
Gelatin hydrogel containing cerium oxide nanoparticles covered by interleukin-17 aptamar as an anti- inflammatory agent for brain inflammation. J Neuroimmunol 2019; 326:79-83. [DOI: 10.1016/j.jneuroim.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
|