1
|
Han Z, Du H, Xu D, Gao Y, Yang S, Song L, Dong J, Pan X. Fe and Mn mixed oxide catalysts supported on Sn-modified TiO 2 for the selective catalytic reduction of NO with NH 3 at low temperature. NEW J CHEM 2022. [DOI: 10.1039/d1nj05290j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeMn/SnxTiO2 catalysts were synthesized by introducing Sn as an additive to modify TiO2 supports, and the Sn doping could improve the SO2 tolerance and low-temperature SCR activity significantly.
Collapse
Affiliation(s)
- Zhitao Han
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Huan Du
- China Waterborne Transport Research Institute, Beijing 100088, China
| | - Duo Xu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Yu Gao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Shaolong Yang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liguo Song
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jingming Dong
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism.
Collapse
|