1
|
Pd-ZnO nanoparticles decorated acid activated montmorillonite for the efficient removal of cationic dyes from water. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
3
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
4
|
Huang WJ, Liu JH, She QM, Zhong JQ, Christidis GE, Zhou CH. Recent advances in engineering montmorillonite into catalysts and related catalysis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1995163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Jun Huang
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qi Ming She
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Jian Qiang Zhong
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - George E. Christidis
- School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Black yet green: A heterogenous carbon-based acid catalyst for the synthesis of biscyclic derivatives under eco-friendly conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Esmati M, Zeynizadeh B. Synthesis of GO and rGO@Fe
3
O
4
@Ni as remarkable nanocatalyst systems for solvent‐free and chemoselective coupling reactions of dimedone with aromatic aldehydes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mozhgan Esmati
- Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| | | |
Collapse
|
7
|
Jokar M, Naeimi H, Nabi Bidhendi G. Design and Preparation of Platinum Anchored on Cellulose as Heterogeneous Nanocatalyst for Synthesis of Bis-Coumarin Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1922468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mitra Jokar
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | |
Collapse
|
8
|
Teli P, Sahiba N, Sethiya A, Soni J, Agarwal S. Advancement in synthetic strategies of bisdimedones: Two decades study. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| |
Collapse
|
9
|
Mitra B, Ghosh P. Humic acid: A Biodegradable Organocatalyst for Solvent‐free Synthesis of Bis(indolyl)methanes, Bis(pyrazolyl)methanes, Bis‐coumarins and Bis‐lawsones. ChemistrySelect 2021. [DOI: 10.1002/slct.202004245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
10
|
Agarwal DK, Sethiya A, Teli P, Manhas A, Soni J, Sahiba N, Jha PC, Agarwal S, Goyal PK. Click chemistry‐inspired design, synthesis, and molecular docking studies of biscoumarin derivatives using carbon‐
based acid
catalyst. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of ChemistryMohan Lal Sukhadia University Udaipur Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of ChemistryMohan Lal Sukhadia University Udaipur Rajasthan India
| | - Anu Manhas
- School of Chemical SciencesCentral University of Gujarat Gandhinagar Gujarat India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of ChemistryMohan Lal Sukhadia University Udaipur Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of ChemistryMohan Lal Sukhadia University Udaipur Rajasthan India
| | - Prakash C. Jha
- School of Applied Material SciencesCentral University of Gujarat Gandhinagar Gujarat India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of ChemistryMohan Lal Sukhadia University Udaipur Rajasthan India
| | | |
Collapse
|
11
|
Sethiya A, Teli P, Manhas A, Agarwal D, Soni J, Sahiba N, Jha P, Agarwal S. Carbon-SO3H: An efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1780613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohan Lal Sukhadia University, Udaipur, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohan Lal Sukhadia University, Udaipur, India
| | - Anu Manhas
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dinesh Agarwal
- Department of Pharmacy, Bhupal Nobel University, Udaipur, India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohan Lal Sukhadia University, Udaipur, India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohan Lal Sukhadia University, Udaipur, India
| | - Prakash Jha
- School of Applied Materials Science, Central University of Gujarat, Gandhinagar, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohan Lal Sukhadia University, Udaipur, India
| |
Collapse
|
12
|
Zare‐Akbari Z, Dastmalchi S, Edjlali L, Dinparast L, Es'haghi M. A novel nanomagnetic solid acid catalyst for the synthesis of new functionalized bis‐coumarin derivatives under microwave irradiations in green conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhila Zare‐Akbari
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| | - Siavoush Dastmalchi
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
- School of PharmacyTabriz University of Medical Sciences Tabriz Iran
- Faculty of PharmacyNear East University Nicosia North Cyprus Turkey
| | - Ladan Edjlali
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| | - Leila Dinparast
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Moosa Es'haghi
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| |
Collapse
|
13
|
Zeynizadeh B, Rahmani S, Tizhoush H. The immobilized Cu nanoparticles on magnetic montmorillonite (MMT@Fe3O4@Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114201] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Teli P, Sethiya A, Agarwal S. An Insight View on Synthetic Protocol, Mechanistic and Biological Aspects of Biscoumarin Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201903632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| |
Collapse
|
15
|
Magyar Á, Hell Z. Simple and efficient synthesis of 2,2′-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02515-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
A simple and efficient method for the synthesis of 2,2′-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives using 4 Å molecular sieves as catalyst is described. This approach offers several advantages such as high yields, mild reaction conditions, easily accessible, and reusable catalyst, and simple work-up procedure.
Graphic abstract
Collapse
|
16
|
Magnetic nanoparticles tris(hydrogensulfato) boron as an efficient heterogeneous acid catalyst for the synthesis of α,ά-benzylidene bis(4-hydroxycoumarin) derivatives under solvent-free condition. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03881-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zeynizadeh B, Rahmani S. Immobilized copper-layered nickel ferrite on acid-activated montmorillonite, [(NiFe2O4@Cu)(H+-Mont)], as a superior magnetic nanocatalyst for the green synthesis of xanthene derivatives. RSC Adv 2019; 9:28038-28052. [PMID: 35558991 PMCID: PMC9092614 DOI: 10.1039/c9ra04320a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, the immobilization of copper-layered nickel ferrite on the surface and in the cavities of acid-activated montmorillonite (H+-Mont) was investigated. In this context, magnetic nanoparticles (MNPs) of NiFe2O4 as the prime magnetic cores were prepared. Next, through the reduction of Cu2+ ions with sodium borohydride, the nanoparticles of Cu0 were immobilized on the nanocore-surface of NiFe2O4, and the constituent NiFe2O4@Cu MNPs were obtained. Moreover, through the activation of montmorillonite K10 (Mont K10) with HCl (4 M) under controlled conditions, the H+-Mont constituent was prepared. The nanostructured NiFe2O4@Cu was then intercalated within the interlayers and on the external surface of the H+-Mont constituent to afford the novel magnetic nanocomposite (NiFe2O4@Cu)(H+-Mont). The prepared clay nanocomposite was characterized using FTIR spectroscopy, SEM, EDX, XRD, VSM and BET analyses. The obtained results showed that through acid-activation, the stacked-sheet structure of Mont K10 was exfoliated to tiny segments, leading to a significant increase in the surface area and total pore volume of the H+-Mont constituent as compared to those of montmorillonite alone. SEM analysis also exhibited that the dispersion of NiFe2O4@Cu MNPs in the interlayers and on the external surface of acid-activated montmorillonite was carried out successfully, and the nanoparticle sizes were distributed in the range of 15–25 nm. The BET surface analysis also indicated that through the immobilization of NiFe2O4@Cu MNPs, the surface area and total pore volume of the H+-Mont system were decreased. The catalytic activity of (NiFe2O4@Cu)(H+-Mont) was further studied towards the synthesis of substituted 13-aryl-5H-dibenzo[b,i]xanthene-5,7,12,14(13H) tetraones 3(a–k) and 3,3,6,6-tetramethyl-9-aryl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H) diones 5(a–k)via the pseudo-one-pot three-component cyclocondensation of 2-hydroxy-1,4-naphthoquinone (Lawsone)/dimedone and aromatic aldehydes in a mixture of H2O–EtOH (1 : 1 mL) as a green solvent at 80–90 °C. The (NiFe2O4@Cu)(H+-Mont) MNPs can be easily separated from the reaction mixture by an external magnetic field and reused for seven consecutive cycles without significant loss of catalytic activity. In this study, the catalytic activity of the prepared (NiFe2O4@Cu)(H+-Mont) MNPs was studied towards the synthesis of dibenzo[b,i]xanthene tetraones 3(a–k) and hexahydroxanthene diones 5(a–k).![]()
Collapse
|