1
|
Xie S, Fang Z, Lian Z, Luo Z, Zhang X, Ma S. A Novel, Dual-Initiator, Continuous-Suspension Grafting Strategy for the Preparation of PP-g-AA-MAH Fibers to Remove of Indigo from Wastewater. Polymers (Basel) 2024; 16:2144. [PMID: 39125170 PMCID: PMC11314004 DOI: 10.3390/polym16152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The indigo dye found in wastewater from printing and dyeing processes is potentially carcinogenic, teratogenic, and mutagenic, making it a serious threat to the health of animals, plants, and humans. Motivated by the growing need to remove indigo from wastewater, this study prepared novel fiber absorbents using melt-blow polypropylene (PP) melt as a matrix, as well as acrylic acid (AA) and maleic anhydride (MAH) as functional monomers. The modification conditions were studied to optimize the double-initiation, continuous-suspension grafting process, and then functional fibers were prepared by melt-blown spinning the modified PP. The results showed that the optimum modification conditions were as follows: a 3.5 wt% interfacial agent, 8 mg/L of dispersant, 80% monomer content, a 0.8 mass ratio of AA to MAH, a 1000 r/min stir speed, 3.5 wt% initiator DBPH grafting at 130 °C for 3 h, and 1 wt% initiator BPO grafting at 90 °C for 2 h. The highest grafting rate of the PP-g-AA-MAH was 31.2%, and the infrared spectrum and nuclear magnetic resonance spectroscopic analysis showed that AA and MAH were successfully grafted onto PP fiber. This modification strategy also made the fibers more hydrophilic. The adsorption capacity of the PP-g-AA-MAH fibers was highly dependent on pH, and the highest indigo adsorption capacity was 110.43 mg/g at pH 7. The fiber adsorption capacity for indigo increased rapidly before plateauing with increasing time or indigo concentration, and the experimental data were well described in a pseudo-second-order kinetic model and a Langmuir isothermal adsorption model. Most impressively, the modified fiber adsorption capacity for indigo remained as high as 91.22 mg/g after eight regeneration and reuse cycles. In summary, the PP-g-AA-MAH fibers, with excellent adsorption-desorption characteristics, could be readily regenerated and reused, and they are a promising material for the removal of indigo from wastewater.
Collapse
Affiliation(s)
- Sijia Xie
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Ziyang Fang
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Zhouyang Lian
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Zhengwei Luo
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Xueying Zhang
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Shengxiu Ma
- Karamay Zhiyuan Bochuang Environmental Protection Technology Co., Ltd., Karamay 834000, China
| |
Collapse
|
2
|
Shi B, Zhang G, Zhang L, Wang C, Li Z, Chen F. Study on a Strong Polymer Gel by the Addition of Micron Graphite Oxide Powder and Its Plugging of Fracture. Gels 2024; 10:304. [PMID: 38786221 PMCID: PMC11121390 DOI: 10.3390/gels10050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties of the acrylamide polymer gel, which can improve the plugging effect of fracture water channeling. The chemical principle of this process is that the hydroxyl and carboxyl groups of the layered micron graphite powder can undergo physicochemical interactions with the amide groups of the polyacrylamide molecule chain. As a rigid structure, the graphite powder can support the flexible skeleton of the original polyacrylamide molecule chain. Through the synergy of the rigid and flexible structures, the viscoelasticity, thermal stability, tensile performance, and plugging ability of the new-type gel can be significantly enhanced. Compared with a single acrylamide gel, after adding 3000 mg/L of micrometer-sized graphite powder, the elastic modulus, the viscous modulus, the phase transition temperature, the breakthrough pressure gradient, the elongation at break, and the tensile stress of the acrylamide gel are all greatly improved. After adding the graphite powder to the polyacrylamide gel, the fracture water channeling can be effectively plugged. The characteristics of the networked water flow channel are obvious during the injected water break through the gel in the fracture. The breakthrough pressure of water flooding is high. The experimental results are an attempt to develop a new gel material for the water plugging of a fractured low-permeability reservoir.
Collapse
Affiliation(s)
- Bin Shi
- Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China; (B.S.); (Z.L.)
- Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710075, China;
| | - Guangming Zhang
- Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China; (B.S.); (Z.L.)
| | - Lei Zhang
- Hubei Provincial Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, Department of Petroleum Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China;
| | - Chengjun Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Petroleum, Xi’an 710065, China;
| | - Zhonghui Li
- Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China; (B.S.); (Z.L.)
| | - Fangping Chen
- Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710075, China;
| |
Collapse
|
3
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Ren Z, Yang X, Zhang W, Zhao Z. Preparation, characterization and performance of a novel magnetic Fe-Zn activated carbon for efficient removal of dyes from wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Li L, Li Y, Li M, Sun Y, Wang H, Cui M, Xu W. Adsorption of tetracycline by Nicandra physaloides (L.) Gaertn seed gum and Nicandra physaloides(L.) Gaertn seed gum/Carboxymethyl chitosan aerogel. ENVIRONMENTAL TECHNOLOGY 2022; 43:4237-4248. [PMID: 34152265 DOI: 10.1080/09593330.2021.1946166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, novel aerogels of Nicandra physaloides (L.) Gaertn seed gum (NPG) and Nicandra physaloides (L.) Gaertn seed gum/Carboxymethyl chitosan (NPG/CMC) were prepared by freeze-drying method for removing tetracycline (TC) from water. Scanning electron microscope (SEM), X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) were used to characterize structure and morphology of NPG and NPG/CMC aerogels. The average pore diameter of NPG and NPG/CMC were 3.04 and 1.2 nm, the specific surface areas were 2.67 and 0.73 m2/g, respectively. The maximum adsorption capacity of NPG and NPG/CMC aerogels for TC based on Langmuir isotherm was 266.7 and 332.23 mg/g respectively. Through thermodynamic and kinetic studies, it was found that the adsorption processes of the two adsorbents were spontaneous and followed the pseudo-second-order kinetic model. And the process of NPG adsorption of TC was endothermic, while NPG/CMC was exothermic.
Collapse
Affiliation(s)
- Liubo Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yanhui Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Meixiu Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yong Sun
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Huimin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Mingfeii Cui
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Wenshuo Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
6
|
Ao L, Lian X, Lin W, Guo R, Xu Y, Dong W, Liu M, Shen C, Sun X, Sun B, Deng B. Insights into a new alternative method with graphene oxide/polyacrylamide/Fe3O4 nanocomposite for the extraction of six odor-active esters from Strong-aroma types of Baijiu. Food Chem X 2022; 15:100379. [PMID: 36211730 PMCID: PMC9532735 DOI: 10.1016/j.fochx.2022.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
A novel approach of MSPE-GC/MS based on GO/PAM/Fe3O4 was developed for odor-active esters determination in Baijiu samples. GO/PAM/Fe3O4 earned highly selective recognition properties and larger adsorption capacities for six odor-active esters. The method provided lower LODs, better precision and faster separation.
Liquid-liquid extraction (LLE) is the most commonly utilized technique for the extraction of odor-active esters (OAEs) in strong-aroma types of Baijiu (SAB). However, since the contents of different OAEs in SAB vary widely, it is still a puzzle to ensure that all OAEs to be thoroughly extracted by LLE without the problem of saturated adsorption. Herein, a novel approach of magnetic solid phase extraction (MSPE), based on the magnetic graphene oxide nanocomposite modified with polyacrylamide (GO/PAM/Fe3O4), was employed for the efficient extraction of six OAEs from SAB. Compared with LLE, GO/PAM/Fe3O4 exhibited highly selective recognition properties and larger adsorption capacities for OAEs (ranging from 13.68 to 39.06 mg/g), resulting in better extraction performances for OAEs. Coupled with GC–MS, six OAEs in real SAB were successfully determined, with recoveries ranged from 70.1 ∼ 90.0% and LODs at 0.08 ∼ 1.35 µg/L. Overall, the MSPE-GC/MS is a promising alternative for accurate determination of OAEs in SAB.
Collapse
|
7
|
Khoo YS, Goh PS, Lau WJ, Ismail AF, Abdullah MS, Mohd Ghazali NH, Yahaya NKEM, Hashim N, Othman AR, Mohammed A, Kerisnan NDA, Mohamed Yusoff MA, Fazlin Hashim NH, Karim J, Abdullah NS. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. CHEMOSPHERE 2022; 305:135151. [PMID: 35654232 DOI: 10.1016/j.chemosphere.2022.135151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nor Hisham Mohd Ghazali
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ahmad Rozian Othman
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Alias Mohammed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Nirmala Devi A/P Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Muhammad Azroie Mohamed Yusoff
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Noor Haza Fazlin Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Jamilah Karim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nor Salmi Abdullah
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
8
|
Çeper EB, Su E, Okay O, Güney O. Surface modification of graphene oxide for preparing self‐healing nanocomposite hydrogels. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ezgi B. Çeper
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Esra Su
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Oguz Okay
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Orhan Güney
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
9
|
Chen F, Wang R, Chen H, Lu H. Preparation of polyacrylamide/MXene hydrogels as highly-efficient electro-adsorbents for methylene blue removal. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1921207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fanglin Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Riyuan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Haoran Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Hongdian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| |
Collapse
|
10
|
Yu Liu, Zhang L, Tang Y, Zhu L. Study on the Preparation and Adsorption Properties of Sodium Alginate Graft Polyacrylic Acid/Graphite Oxide Composite Hydrogel. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21020061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M, Gao B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116448. [PMID: 33486256 DOI: 10.1016/j.envpol.2021.116448] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a group of relatively low-concentration but high-toxicity pollutants in the environment, have attracted widespread attention in recent years. These trace pollutants can be enriched in organisms and finally transferred to human bodies, posing a potential hazard to public health. Biochar, a low-cost and high-efficiency adsorbent, has been used to treat ECs in water. However, due to certain limitations of pristine biochar, such as poor adsorption capacity, narrow adsorption range, and other shortcomings, it is necessary to modify biochar to improve its applications in water treatment for ECs. Currently, there are a lot of reports on the removal of ECs from water by modified biochar. These studies explored different modification methods to functionalize biochar with various physicochemical properties, which resulted in distinct adsorption effects, behaviors and mechanisms of modified biochar on different ECs. There is a need to systematically review and digest the knowledge on the adsorption of ECs on modified biochar. In this review, recent biochar modification methods used in ECs removal are firstly summarized, and the adsorption performance and mechanisms of modified biochar on typical ECs are then systematically reviewed. Finally, the main research directions and trends, as well as recommendations and suggestions for future development are pointed out.
Collapse
Affiliation(s)
- Ning Cheng
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Pan Wu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Miao Chen
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
12
|
Wang Z, Zhang G, Li Y. Preparation of Chitosan/Polyacrylamide/Graphene Oxide Composite Membranes and Study of Their Methylene Blue Adsorption Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4407. [PMID: 33023263 PMCID: PMC7579334 DOI: 10.3390/ma13194407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022]
Abstract
This thesis reports the preparation of chitosan/polyacrylamide/graphene oxide nanocomposites (CAGs) and a study of its adsorption properties of methylene blue (MB) solution. Initially, we synthesized CAGs by blending and freeze-drying methods. Then, we conducted a series experiments by removing MB from aqueous solution to test its adsorption properties and adsorption mechanism. We used UV-Vis spectrophotometry to determine the concentration of residual methylene blue accurately and efficiently, which has a specific absorption peak at 662 nm in the UV-Vis spectrum, in aqueous solution. When the graphene oxide content in the composite was 20 wt%, the adsorption capacity reached maximum values. The chemical properties and surface structure of the nanomaterials were analyzed using FT-IR, TGA, SEM, and BET. Also, we carried out experiments to measure the adsorption properties of the CAGs by varying several factors, such as initial concentration, adsorption time, and pH, etc. The outcomes revealed that the adsorption equilibrium was developed after 2800 min at 20 °C (room temperature) with an adsorbent dosage of 0.01 g.mL-1. The ion adsorption equilibrium data were well-fitted by the Langmuir isotherm with a maximum monolayer capacity of 510.2 mg/g. Kinetic researches disclosed that the adsorption procedure was defined by a pseudo-second-order model. Thermodynamic researches revealed that the enthalpy change (ΔH0) as well as Gibbs free energy change (ΔG0) of the adsorption procedure was negative, indicating that the adsorption procedure was spontaneous and exothermic. After three cycles, the removal efficiency was still 90.18%. Therefore, in conclusion, we believe that the CAGs is a good adsorption material for organic dyes due to its good adsorption and recyclable properties.
Collapse
Affiliation(s)
- Zheqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
| | - Guohua Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Dong W, Guo R, Lin W, Liu M, Shen C, Sun X, Sun B, Deng B. Polyamine-Modified Magnetic Graphene Oxide Nanocomposites and HPLC-MS/MS Allow the Determination of Two Indolic Derivatives in Strong-Aroma Types of Base Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3594-3606. [PMID: 32100525 DOI: 10.1021/acs.jafc.9b08235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simultaneous detection of 3-indoleacetic acid (IAA) and 3-indolepropionic acid (IPA) in strong-aroma types of base Baijiu (base SAB) is crucial for elucidating the metabolic pathway of 3-methylindole during the base SAB brewing. Herein, a novel magnetic poly(allylamine)-modified graphene oxide (GO@PAA@Fe3O4) was synthesized as extraction sorbent, followed by high performance liquid chromatography mass spectrometry HPLC-MS/MS. As a surface modifier of GO, the introduction of PAA and Fe3O4 provided more adsorption sites for IAA and IPA, mainly through the generation of H-bonding sites. Moreover, modified by an activation step, the capacity of the activated GO@PAA@Fe3O4 for the adsorption of IAA and IPA was 2.1-3.4 times higher than that of unactivated material. The adsorptions of IAA and IPA on GO@PAA@Fe3O4 were fitted to the pseudo-second-order kinetic model and Langmuir isotherm, respectively. Under the optimal conditions, IAA and IPA were determined in 16-base SAB for the first time, and their concentrations ranged from 0.6 to 11.3 and 0.7 to 18.7 μg/L, respectively.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, School of Light Industry, Beijing 100048, P. R. China
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ruonan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, School of Light Industry, Beijing 100048, P. R. China
| | - Wenxuan Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, School of Light Industry, Beijing 100048, P. R. China
| | - Miao Liu
- Luzhou Laojiao Co.Ltd., Luzhou, Sichuan 646000, P. R. China
| | - Caihong Shen
- Luzhou Laojiao Co.Ltd., Luzhou, Sichuan 646000, P. R. China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, School of Light Industry, Beijing 100048, P. R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, School of Light Industry, Beijing 100048, P. R. China
| | - Bo Deng
- Luzhou Laojiao Co.Ltd., Luzhou, Sichuan 646000, P. R. China
| |
Collapse
|
14
|
Lv Q, Wu M, Shen Y. Enhanced swelling ratio and water retention capacity for novel super-absorbent hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Najdanović SM, Petrović MM, Kostić MM, Mitrović JZ, Bojić DV, Antonijević MD, Bojić AL. Electrochemical synthesis and characterization of basic bismuth nitrate [Bi6O5(OH)3](NO3)5·2H2O: a potential highly efficient sorbent for textile reactive dye removal. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03983-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03957-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Synthesis of magnetic graphene/nylon 6 nanocomposite and its application for removal of lead ions from aqueous solutions: isotherm and kinetic studies. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03917-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|