1
|
Bertão AR, Teixeira F, Ivasiv V, Parpot P, Almeida-Aguiar C, Fonseca AM, Bañobre-López M, Baltazar F, Neves IC. Machine Learning-Assisted Optimization of Drug Combinations in Zeolite-Based Delivery Systems for Melanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5696-5707. [PMID: 38271191 PMCID: PMC10859889 DOI: 10.1021/acsami.3c18224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Two independent artificial neural network (ANN) models were used to determine the optimal drug combination of zeolite-based delivery systems (ZDS) for cancer therapy. The systems were based on the NaY zeolite using silver (Ag+) and 5-fluorouracil (5-FU) as antimicrobial and antineoplastic agents. Different ZDS samples were prepared, and their characterization indicates the successful incorporation of both pharmacologically active species without any relevant changes to the zeolite structure. Silver acts as a counterion of the negative framework, and 5-FU retains its molecular integrity. The data from the A375 cell viability assays, involving ZDS samples (solid phase), 5-FU, and Ag+ aqueous solutions (liquid phase), were used to train two independent machine learning (ML) models. Both models exhibited a high level of accuracy in predicting the experimental cell viability results, allowing the development of a novel protocol for virtual cell viability assays. The findings suggest that the incorporation of both Ag and 5-FU into the zeolite structure significantly potentiates their anticancer activity when compared to that of the liquid phase. Additionally, two optimal AgY/5-FU@Y ratios were proposed to achieve the best cell viability outcomes. The ZDS also exhibited significant efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus); the predicted combination ratio is also effective against S. aureus, underscoring the potential of this approach as a therapeutic option for cancer-associated bacterial infections.
Collapse
Affiliation(s)
- Ana Raquel Bertão
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Life
and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University
of Minho, 4710-057 Braga/Guimarães, Portugal
- Advanced
(Magnetic) Theranostic Nanostructures Lab, Nanomedicine Group, International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Filipe Teixeira
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Viktoriya Ivasiv
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pier Parpot
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- CBMA - Centre
of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - António M. Fonseca
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| | - Manuel Bañobre-López
- Advanced
(Magnetic) Theranostic Nanostructures Lab, Nanomedicine Group, International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fátima Baltazar
- Life
and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University
of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Isabel C. Neves
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Le TTH, Ngo TH, Nguyen TH, Hoang VH, Nguyen VH, Nguyen PH. Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells. Biochem Biophys Res Commun 2023; 661:99-107. [PMID: 37087804 DOI: 10.1016/j.bbrc.2023.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Using extracts from herbs for silver nanoparticle synthesis is attracting attention for its anticancer activity. Ardisia gigantifolia is a herb used in traditional Chinese medicine for treating stomach ailments, and some compounds isolated from this plant exhibit the inhibitory activity against different cancer cells. However, the synthesis of silver nanoparticle using extract of Ardisia gigantiflia leaves and their anti-cancer activity was not reported. In this report, the green synthesized silver nanoparticles using Ardisia gigantiflia extract (Arg-AgNPs) has average diameter of 6 nm with functional groups including O-H, C-H, and CO founded on the surface of these nanoparticles. The viability assays results revealed Arg-AgNPs reduced gastric cancer cell proliferation in a dose-dependent manner, with IC50 values of 1.37 and 0.65 μg/mL for AGS cells and 1.03 and 0.96 μg/mL for MKN45 cells. Arg-AgNPs caused cell cycle arrest at the G0/G1 phase and suppressed cell migration. Additionally, Arg-AgNPs significantly increased the percentage of senescent cells and promoted overproduction of reactive oxygen species (ROS) compared to the control. Thus, this study indicates that Arg-AgNPs can be considered as a promising candidate against human gastric cancer cells.
Collapse
Affiliation(s)
- Thi Thanh Huong Le
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Thu Ha Ngo
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Thi Huong Nguyen
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Van Hung Hoang
- Thai Nguyen University (TNU), Thai Nguyen City, Viet Nam
| | - Van Hao Nguyen
- Institute of Science and Technology, TNU - University of Sciences (TNUS), Thai Nguyen City, Viet Nam.
| | - Phu Hung Nguyen
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam; Center of Interdisciplinary Science and Education, Thai Nguyen City, Viet Nam.
| |
Collapse
|
4
|
Costa M, Carreiro EP, Filho CMC, Silva M, Gonçalves I, Souza EF, Teixeira APS, Craveiro A, Burke AJ. Chitosan Salts as Stabilizing Agents for the Synthesis of Silver Nanoparticles (AgNPs). ChemistrySelect 2023. [DOI: 10.1002/slct.202203413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marina Costa
- LAQV-REQUIMTE, Institute for Research and Advanced Studies University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Studies University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| | | | - Mara Silva
- BRinova Bioquímica Rua Fernando Seno, n° 6 7005-485 Évora Portugal
| | - Isabel Gonçalves
- BRinova Bioquímica Rua Fernando Seno, n° 6 7005-485 Évora Portugal
| | - Esmar F. Souza
- BRinova Bioquímica Rua Fernando Seno, n° 6 7005-485 Évora Portugal
| | - António P. S. Teixeira
- LAQV-REQUIMTE, Institute for Research and Advanced Studies University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| | | | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Studies University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
- Department of Chemistry and Biochemistry, School of Science and Technology University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
- Faculty of Pharmacy University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| |
Collapse
|
5
|
Elshazly EH, Mohamed AKSH, Aboelmagd HA, Gouda GA, Abdallah MH, Ewais EA, Assiri MA, Ali GAM. Phytotoxicity and Antimicrobial Activity of Green Synthesized Silver Nanoparticles Using Nigella sativa Seeds on Wheat Seedlings. J CHEM-NY 2022; 2022:1-9. [DOI: 10.1155/2022/9609559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Recently, the green synthesis of nanomaterials has grown in popularity and has become one of the most used approaches. Plant extracts are safe for the environment and could be cost-effective for nanoparticle preparation. Silver nanoparticles (AgNPs) have been synthesized using aqueous extracts of Nigella sativa (N. sativa) seeds. The formation of AgNPs was confirmed by using an X-ray diffractometer, a UV-visible spectrometer, and a transmission electron microscope. The phytotoxicity and genotoxicity of different AgNP concentrations (12.5, 25, 50, 75, and 100 μg·L−1) were evaluated by wheat (Triticum aestivum L.) seed germination. The results showed that AgNPs did not significantly affect germination, while root and coleoptile lengths decreased considerably. On the contrary, the biomass of seedlings markedly increased in response to AgNP treatments. Moreover, genotoxicity was detected, especially at high concentrations of AgNPs. DNA, RNA, and total soluble proteins of wheat seedlings significantly decreased. In addition, antimicrobial activities of biosynthesized AgNPs were detected.
Collapse
Affiliation(s)
- Ezzat H. Elshazly
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | | | - Hesham A. Aboelmagd
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal A. Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed H. Abdallah
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Emad A. Ewais
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Gomaa A. M. Ali
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
6
|
Green synthesis of chitosan-stabilized silver-colloidal nanoparticles immobilized on white-silica-gel beads and the antibacterial activities in a simulated-air-filter. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Dai X, Li S, Li S, Ke K, Pang J, Wu C, Yan Z. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Int J Biol Macromol 2022; 202:407-417. [PMID: 34999048 DOI: 10.1016/j.ijbiomac.2021.12.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
In this study, chitosan (CS) film containing covalent organic frameworks (COFs) immobilized silver nanoparticles (AgNPs) were developed for food packaging with improved antibacterial activities and film properties. COFs-AgNPs were fabricated via in-situ synthesis of immobilizing AgNPs on COFs. Transmission electron microscope, Zeta potential, X-ray diffraction, element mapping and Fourier transform infrared spectroscopy confirmed the successful fabrication of COFs-AgNPs, and COFs-AgNPs showed superior antibacterial activity against S. aureus and E. coli. Furthermore, the as-prepared COFs-AgNPs composite was further used to fabricate CS composite films (CS/COFs-AgNPs) by a solution casting method. The findings showed that the tensile strength of the nanocomposite films enhanced dramatically with the increase of the COFs-AgNPs content, while the UV-visible light barrier property, water swelling and solubility properties, and water vapor permeability (WVP) decreased significantly. Not only that, the CS/COFs-AgNPs nanocomposite films also showed outstanding antibacterial activity and effectively prolonged the storage time of white crucian carp (Carassius auratus). As a result, CS/COFs-AgNPs nanocomposite films show great potential in active food packaging.
Collapse
Affiliation(s)
- Xinxian Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhan Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keqin Ke
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiming Yan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Mirajkar S, Rathod P, Pawar B, Penna S, Dalvi S. γ-Irradiated Chitosan Mediates Enhanced Synthesis and Antimicrobial Properties of Chitosan-Silver (Ag) Nanocomposites. ACS OMEGA 2021; 6:34812-34822. [PMID: 34963964 PMCID: PMC8697400 DOI: 10.1021/acsomega.1c05358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 05/10/2023]
Abstract
Chitosan (CSN) and its derivatives are being exploited for their potential role in agriculture in mitigating environmental stress factors. The present study was aimed to enhance the synthesis of chitosan (CSN)-based silver nanoparticles (Ag NPs) using γ-irradiated chitosan (IR-CSN) and to study the antimicrobial activity of IR-CSN-Ag NPs. The chitosan-silver nanocomposites (CSN-Ag NPs) were prepared by employing the green synthesis method using normal chitosan (high molecular weight (MW), NL-CSN) and oligochitosans (low MW, IR-CSN). The latter was derived by irradiation with γ rays (60Co) at 100 kGy dose to obtain a lower MW (approximately 25 kDa). NL-CSN and IR-CSN (0.0-2.5% w/v) were amalgamated with different concentrations of silver nitrate (0.0-2.5% w/v) and vice versa. The UV-visible spectra displayed a single peak in the range of 419-423 nm, which is the characteristic surface plasmon resonance (SPR) for Ag NPs. The physicochemical properties were assessed using different methods such as transmission electron microscopy (TEM), Fourier transform infrared (FTIR), zetasizer, elemental (CHNS) analysis, etc. The degree of Ag NP synthesis was more in IR-CSN than NL-CSN. The in vitro disc diffusion assay with IR-CSN-Ag NPs exhibited a significantly higher antimicrobial activity against Escherichia coli. Further evaluation of the antifungal activity of IR-CSN and Ag NPs showed a synergistic effect against chickpea wilt (Fusarium oxysporum f. sp. ciceris). The study has provided a novel approach for the improved synthesis of CSN-Ag nanoparticle composites using γ-irradiated chitosan. This study also opens up new options for the development and deployment of γ-irradiated chitosan-silver nanocomposites for the control of phytopathogens in sustainable agriculture.
Collapse
Affiliation(s)
- Shriram Mirajkar
- Plant
Tissue Culture Section, Vasantdada Sugar
Institute, Manjari (Bk.), Pune 412307, India
| | - Prakash Rathod
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Bharat Pawar
- Plant
Pathology Section, Vasantdada Sugar Institute, Manjari (Bk.), Pune 412307, India
| | - Suprasanna Penna
- Nuclear
Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sunil Dalvi
- Plant
Tissue Culture Section, Vasantdada Sugar
Institute, Manjari (Bk.), Pune 412307, India
| |
Collapse
|
9
|
Pham BTT, Duong THT, Nguyen TT, Van Nguyen D, Trinh CD, Bach LG. Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Srikhao N, Kasemsiri P, Lorwanishpaisarn N, Okhawilai M. Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04354-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Yuan Y, Zhang X, Pan Z, Xue Q, Wu Y, Li Y, Li B, Li L. Improving the properties of chitosan films by incorporating shellac nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Controlled size green synthesis of bioactive silver nanoparticles assisted by chitosan and its derivatives and their application in biofilm preparation. Carbohydr Polym 2020; 236:116063. [PMID: 32172878 DOI: 10.1016/j.carbpol.2020.116063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/30/2022]
Abstract
The aim of this work was to explore the effect of various molecular weight (Mw) chitosan depolymerization products (CDP) on the silver nanoparticles (AgNPs) and chitosan/AgNPs blend films production. Produced AgNPs, stable during 30 days in a colloïdal form, were characterized in terms of UV-vis, transmission electron microscopy (TEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR) analyses. AgNPs displayed interesting antibacterial and antioxidant properties that were affected by the physicochemical properties of used chitosans. Interestingly, CDP may be used for the preparation of bioactive and stable AgNPs. Additionally, chitosan/AgNPs blend films were prepared and characterized in terms of physiochemical and biological properties. As compared to the chitosan film, various properties were enhanced in the chitosan/AgNPs blend films, including light barrier, opacity, elongation at break, as well as bioactivities, thus suggesting that films could be used as novel alternative food packaging applications.
Collapse
|