1
|
Ri CN, Hwang KJ, Kim TN, Ro YH, Ri JS. The Synthesis of a Novel Ternary Bi/Bi2WO6/Amorphous Bi4V2O11 Heterojunction Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Reduction of Cr(VI). Catal Letters 2022. [DOI: 10.1007/s10562-022-04216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X. Recent Advances in g-C 3 N 4 -Based Photocatalysts for Pollutant Degradation and Bacterial Disinfection: Design Strategies, Mechanisms, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105089. [PMID: 34841656 DOI: 10.1002/smll.202105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging photocatalytic technology promises to provide an effective solution to the global energy crisis and environmental pollution. Graphite carbon nitride (g-C3 N4 ) has gained extensive attention in the scientific community due to its excellent physical and chemical properties, attractive electronic band structure, and low cost. In this paper, research progress in design strategies for g-C3 N4 -based photocatalysts in the past five years is reviewed from the perspectives of nanostructure construction, element doping, and heterostructure construction. To clarify the relationship between application requirements and structural design, variations in the morphology, electronic energy band structure, light absorption capacity, as well as interfacial charge transfer caused by various modification strategies are discussed in detail. The recent applications of g-C3 N4 -based photocatalysts for pollutant degradation and bacterial disinfection are reviewed, as well as the antimicrobial activity and degradation mechanisms. Finally, current challenges and future development directions for the practical application of g-C3 N4 -based photocatalysts are tentatively discussed.
Collapse
Affiliation(s)
- Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Perylene diimide supermolecule (PDI) as a novel and highly efficient cocatalyst for photocatalytic degradation of tetracycline in water: A case study of PDI decorated graphitic carbon nitride/bismuth tungstate composite. J Colloid Interface Sci 2022; 615:849-864. [PMID: 35182855 DOI: 10.1016/j.jcis.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Employing perylene diimide supermolecule (PDI) as metal-free cocatalyst, a novel PDI/g-C3N4/Bi2WO6 (PCB) photocatalyst was constructed for the effective degradation of antibiotics. Both the photocatalytic activity and photostability of g-C3N4/Bi2WO6 (gCB) were further improved after loading PDI. Under simulated sunlight illumination, the apparent rate constant of tetracycline (TC) degradation by PCB reached 2.6 times that of gCB. The photocatalytic activity of PCB still kept over 80% after 4 cycle experiments, while gCB only remained around 21%. The superior activity of PCB was ascribed to the synergism between the extended visible light absorption range through the participation of PDI cocatalyst and facilitated gCB-to-PDI photoelectron transfer. TC would finally be transformed into non-toxic ring opening products and mineralized. This work demonstrated that PDI was an excellent metal-free cocatalyst and exhibited great potential to boost the activity of photocatalysts.
Collapse
|
4
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
5
|
Nemiwal M, Zhang TC, Kumar D. Recent progress in g-C 3N 4, TiO 2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144896. [PMID: 33636763 DOI: 10.1016/j.scitotenv.2020.144896] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 05/27/2023]
Abstract
Water contamination by dyes is a matter of concern for human health and the environment. Various methods (membrane separation, coagulation and adsorption) have been explored to remove/degrade dyes. However, now the exploitation of semiconductor assisted materials using renewable solar energy has emerged as a potential candidate to resolve the issue. Although, single component photocatalysts (ZnO, TiO2, ZrO2) were experimented, due to their low efficiency and stability due to the high recombination rate electron-hole pair and inefficient visible light absorption, composites of semiconductor materials are being used. Semiconductor heterojunction systems are developed by coupling two or more semiconductor components. The synergistic effect of their properties, such as adsorption and improved charge carrier migration, is observed to increase overall stability. This review covers recent progress in advanced nanocomposite materials based on g-C3N4, TiO2 and ZnO used as photocatalysts with details of enhancing the photocatalytic properties by heterojunctions, crystallinity and doping. The conclusion at the end displays a summary, research gaps and future outlook. A holistic analysis of recent progress to demonstrate the efficient heterojunctions for photodegradation with optimal conditions, this review will be helpful for the development of efficient heterostructured systems for photodegradation. This review covers references from the year 2017-2020.
Collapse
Affiliation(s)
- Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India.
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, USA
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
6
|
Babu B, Koutavarapu R, Shim J, Kim J, Yoo K. Enhanced solar-light-driven photocatalytic and photoelectrochemical properties of zinc tungsten oxide nanorods anchored on bismuth tungsten oxide nanoflakes. CHEMOSPHERE 2021; 268:129346. [PMID: 33360940 DOI: 10.1016/j.chemosphere.2020.129346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO4) nanorods, bismuth tungsten oxide (Bi2WO6) nanoflakes, and Bi2WO6/ZnWO4 (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO4 nanorods were moderately dispersed on the Bi2WO6 nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm2 in comparison with Ag/AgCl in a 0.1 M Na2SO3 electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.
Collapse
Affiliation(s)
- Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jonghoon Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|