1
|
Wang X, Abass G, Wang J, Song D, Ma A. A comparative DFT study of HCHO decomposition on different terminations of the Co 3O 4(110) surface. Dalton Trans 2024; 53:12381-12389. [PMID: 38995145 DOI: 10.1039/d4dt01068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Density functional theory calculations have been performed to compare the HCHO decomposition on Co3O4(110)-A and (110)-B terminations. The results showed that the energy barriers of the two C-H bond cleavages of HCHO on the (110)-A termination were lower than those on the (110)-B termination, suggesting that the (110)-A termination had stronger HCHO decomposition ability than the (110)-B termination. Electronic structures revealed that the stronger HCHO decomposition ability of the (110)-A termination might be ascribed to the strong covalent bond between HCHO and the (110)-A termination, as well as the higher d-band center of Co3+ ions on the (110)-A termination. Furthermore, we proposed that the preparation of Co3O4 under oxygen-rich growth conditions was beneficial to HCHO decomposition because the (110)-A termination was more stable under oxygen-rich conditions.
Collapse
Affiliation(s)
- Xing Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Gbemi Abass
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Jiajia Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Dan Song
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| | - Aibin Ma
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, P. R. China.
| |
Collapse
|
2
|
Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts 2022. [DOI: 10.3390/catal12070705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Formaldehyde (HCHO) is recognized as one of the most emitted indoor air pollutants with high detrimental effect on human health. Significant research efforts are focused on HCHO removal to meet emission regulations in an effective and economically profitable way. For over three decades, the unique electronic properties and catalytic abilities of nano-gold catalysts continue to be an attractive research area for the catalytic community. Recently, we reported that mechanochemical mixing is a relevant approach to the preparation of Co-Ce mixed oxides with high activity in complete benzene oxidation. A trend of higher surface defectiveness, in particular, oxygen vacancies, caused by close interaction between cobalt oxide and cerium oxide phases, was observed for a mixed oxide composition of 70 wt.% Co3O4 and 30 wt.% CeO2. These results directed further improvement by promotion with gold and optimization of mixed oxide composition, aiming for the development of an efficient catalyst for room temperature HCHO abatement. Support modification with potassium was studied; however, the K addition caused less enhancement of HCHO oxidation activity than expected. This motivated the preparation of new carrier material. In addition to Co3O4-CeO2 mixed metal oxides with preset ratio, γ-Al2O3 intentionally containing 33% boehmite and shortly named Al2O3-b was used for synthesis. Analysis of the role of support composition in HCHO oxidation was based on the characterization of nano-gold catalysts by textural measurements, XRD, HRTEM, XPS, and TPR techniques. Gold supported on mechanochemically treated Co3O4-CeO2-Al2O3-b (50 wt.% Al2O3-b) exhibited superior activity owing to high Ce3+ and Co3+ surface amounts and the most abundant oxygen containing species with enhanced mobility. This catalyst achieved oxidation to CO2 and H2O by 95% HCHO conversion at room temperature and 100% at 40 °C, thus implying the potential of this composition in developing efficient catalytic materials for indoor air purification.
Collapse
|
3
|
Duan C, Meng M, Huang H, Ding H, Zhang Q, Lin Z, Huang S, Chen C, He M. Effect of calcination temperature on the structure and formaldehyde removal performance at room temperature of Cr/MnO2 catalysts. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Liu H, Yang J, Jia Y, Wang Z, Jiang M, Shen K, Zhao H, Guo Y, Guo Y, Wang L, Dai S, Zhan W. Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO x Supported on Acid-Etched Co 3O 4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10734-10743. [PMID: 34270224 DOI: 10.1021/acs.est.1c02970] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ru catalysts have attracted increasing attention in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). However, the development of Ru catalysts with high activity and thermal stability for CVOC oxidation still poses significant challenges due to their restrictive relationship. Herein, a strategy for constructing surface defects on Co3O4 support by acid etching was utilized to strengthen the interaction between active RuOx species and the Co3O4 support. Consequently, both the dispersity and thermal stability of RuOx species were significantly improved, achieving both high activity and stability of Ru catalysts for CVOC oxidation. The optimized Ru catalyst on the HF-etched Co3O4 support (Ru/Co3O4-F) achieved complete oxidation of vinyl chloride at 260 °C under 30 000 mL·g-1·h-1, which was lower than 300 °C for the Ru catalyst on the original Co3O4 (Ru/Co3O4). More importantly, the Ru species on the Ru/Co3O4-F catalyst were hardly lost after calcination at 500-700 °C and even reacting at 650 °C for 120 h. On this basis, the polychlorinated byproducts over the Ru/Co3O4-F catalyst were almost completely effaced by phosphate modification on the catalyst surface. These findings show that the method combining acid etching of the support and phosphate modification provides a strategy for the advancement of catalyst design for CVOC oxidation.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jing Yang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingxiang Jiang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kai Shen
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hailin Zhao
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Lin Z, He M, Liu Y, Meng M, Cao Z, Huang S, Chen C, Deng H. Effect of calcination temperature on the structural and formaldehyde removal activity of Mn/Fe2O3 catalysts. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04470-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|