1
|
Alzarea LA, Alhumaimess MS, Alsohaimi IH, Hassan HMA, El-Aassar MR, Essawy AA, Kalil H. Efficient Dual-Function Catalyst: Palladium-Copper Nanoparticles Immobilized on Co-Cr LDH for Seamless Aerobic Oxidation of Benzyl Alcohol and Nitrobenzene Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1956. [PMID: 37446472 PMCID: PMC10361210 DOI: 10.3390/nano13131956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Layered double hydroxides (LDHs) present exciting possibilities across various industries, ranging from catalytic applications to water remediation. By immobilizing nanoparticles, LDHs' characteristics and functionality can be enhanced, allowing for synergetic interactions that further expand their potential uses. A simple chemical method was developed to produce well-dispersed Pd-Cu NPs on a Co-Cr LDH support using a combination of in situ coprecipitation/hydrothermal and sol-immobilization techniques. The Pd-Cu@Co-Cr LDH catalysts was obtained, showing its catalytic activity in promoting the aerobic oxidation of alcohols and enabling the reduction of nitro-compounds through NaBH4 mediation. The physicochemical properties of the prepared catalyst were comprehensively investigated utilizing a range of analytical techniques, comprising FTIR, XRD, XPS, TGA, nitrogen adsorption isotherm, FESEM, and HRTEM-EDX. The findings showed the significance of immobilizing the bimetallic Pd-Cu nanoparticles on the Co-Cr LDH via an exceptional performance in the aerobic oxidation of benzyl alcohol (16% conversion, 99.9% selectivity to benzaldehyde) and the reduction of nitrobenzene (98.2% conversion, rate constant of 0.0921 min-1). The improved catalytic efficacy in benzyl alcohol oxidation and nitrobenzene reduction on the Pd-Cu@Co-Cr LDH catalyst is attributed to the uniform distribution and small size of the Pd-Cu NPs as active sites on the Co-Cr LDH surface. The prepared catalyst demonstrated exceptional stability during repeated runs. This study paves the way for multiple opportunities in tailoring, producing, and precisely controlling catalysts for various organic transformation reactions.
Collapse
Affiliation(s)
- Linah A Alzarea
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Mosaed S Alhumaimess
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - M R El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Amr A Essawy
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Haitham Kalil
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
2
|
Maleki B, Sandaroos R, Peiman S. Mn(III) Schiff base complexes containing crown ether rings immobilized onto MCM-41 matrix as heterogeneous catalysts for oxidation of alkenes. Heliyon 2023; 9:e15041. [PMID: 37089383 PMCID: PMC10114206 DOI: 10.1016/j.heliyon.2023.e15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Six catalysts MnL1-MnL6, containing two crown ether rings and their analogs supported on the MCM-41 heterogeneous substrate (MnL1@MCM41-MnL5@MCM41) were synthesized and characterized. A mixture of molecular oxygen, as an oxidant, and these catalysts were used for the epoxidation of styrene. As a general result, the supported catalysts showed better performance compared with the unsupported analogs. On the other hand, the supported species, in addition to recyclability, did not require an axial base and reducing agent.
Collapse
|
3
|
Hassan HM, Alhumaimess MS, Alsohaimi IH, Mohamed SK, Aldosari OF, Alraddadi TS, Essawy AA. One-pot phyto-mediated combustion technicality for synthesizing Pd adorned Cu2O@CuO heterojunction with great efficiency in CO oxidation and epoxidation applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Pan C, Wang C, Zhao X, Xu P, Mao F, Yang J, Zhu Y, Yu R, Xiao S, Fang Y, Deng H, Luo Z, Wu J, Li J, Liu S, Xiao S, Zhang L, Guo Y. Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. J Am Chem Soc 2022; 144:4942-4951. [PMID: 35262357 DOI: 10.1021/jacs.1c12772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Activation of O2 is a crucial step in oxidation processes. Here, the concept of sp-hybridized C≡C triple bonds as an electron donor is adopted to develop highly active and stable catalysts for molecular oxygen activation. We demonstrate that the neighboring sp-hybridized C and Cu sites on the interface of the sub-nanocluster CuO/graphdiyne are the key structures to effectively modulate the O2 activation process in the bridging adsorption mode. The as-prepared sub-nanocluster CuO/graphdiyne catalyst exhibited the highest CO oxidation activity and readily converted 50% CO at around 133 °C, which is 34 and 94 °C lower than that for CuO/graphene and CuO/active carbon catalysts, respectively. In situ diffused reflectance infrared Fourier transform spectroscopy and density functional theory calculation results proved that the neighboring sp-hybridized C is more favorable to promote the rapid dissociation of carbonate than sp2-hybridized C without overcoming any energy barrier. The gaseous CO directly reacts with the active molecular oxygen and tends to proceed through the E-R mechanism with a relatively low energy barrier (0.20 eV). This work revealed that sp-hybridized C of graphdiyne-based materials could effectively improve the O2 activation efficiency, which could facilitate the low-temperature oxidation processes.
Collapse
Affiliation(s)
- Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chenyang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xinya Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peiyan Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feihong Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shiyi Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
5
|
Nayak PS, Barik B, Achary LSK, Maji B, Sahoo SJ, Dash P. Facile design of a WO3 nanorod-decorated graphene oxide 1D–2D nanocatalyst for the synthesis of quinoline and its derivatives. NEW J CHEM 2022. [DOI: 10.1039/d1nj05681f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide supported WO3 nanorod as an efficient and recyclable catalyst for synthesis of Quinoline and its derivatives under solventless condition.
Collapse
Affiliation(s)
- Pratap S. Nayak
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bapun Barik
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
- School of material science and Engineering, Chonnam National University, Gwang-Ju, Republic of Korea
| | - L. Satish K. Achary
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
- Department of chemistry, CV Raman Global University, Bhubaneswar, Odisha, 752054, India
| | - Banalata Maji
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shital Jyotsna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
6
|
Olatunde OC, Onwudiwe DC. Graphene-Based Composites as Catalysts for the Degradation of Pharmaceuticals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1529. [PMID: 33562739 PMCID: PMC7914572 DOI: 10.3390/ijerph18041529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
The incessant release of pharmaceuticals into the aquatic environment continues to be a subject of increasing concern. This is because of the growing demand for potable water sources and the potential health hazards which these pollutants pose to aquatic animals and humans. The inability of conventional water treatment systems to remove these compounds creates the need for new treatment systems in order to deal with these class of compounds. This review focuses on advanced oxidation processes that employ graphene-based composites as catalysts for the degradation of pharmaceuticals. These composites have been identified to possess enhanced catalytic activity due to increased surface area and reduced charge carrier recombination. The techniques employed in synthesizing these composites have been explored and five different advanced oxidation processes-direct degradation process, chemical oxidation process, photocatalysis, electrocatalyis processes and sonocatalytic/sono-photocatalytic processes-have been studied in terms of their enhanced catalytic activity. Finally, a comparative analysis of the processes that employ graphene-based composites was done in terms of process efficiency, reaction rate, mineralization efficiency and time required to achieve 90% degradation.
Collapse
Affiliation(s)
- Olalekan C. Olatunde
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|