1
|
Zvyagina AI. Controlled Self-Assembly of Low-Dimensional Supramolecular Systems Based on Double-Decker Lanthanide Phthalocyaninates. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Possessing unique physicochemical properties, phthalocyanines are widely used as active components of supramolecular ensembles and nanomaterials. The functional properties of phthalocyanine-based materials are governed by not only the structure of their discotic molecules, but also the character of their intermolecular interactions, which determine both the self-assembly mechanism and the structure of such systems. This review discusses the experimental approaches, which are based on the notions of colloid and coordination chemistry that enable one to control intermolecular interactions in low-dimensional supramolecular ensembles based on phthalocyanines and metallocomplexes thereof. Using double-decker crown-substituted lanthanide phthalocyaninates as an example, it is shown how one- and two-dimensional nanomaterials with different properties can be obtained from the same type of building blocks employing a set of colloid-chemical methods. Such materials are, in particular, capable for controlled absorption of visible light in ultrathin films and can be employed as conducting one-dimensional components of planar elements for organic electronics.
Collapse
|
2
|
Ladikan O, Silyavka E, Mitrofanov A, Laptenkova A, Shilovskikh V, Kolonitckii P, Ivanov N, Remezov A, Fedorova A, Khripun V, Pestova O, Podolskaya EP, Sukhodolov NG, Selyutin AA. Thin Films of Lanthanide Stearates as Modifiers of the Q-Sense Device Sensor for Studying Insulin Adsorption. ACS OMEGA 2022; 7:24973-24981. [PMID: 35910105 PMCID: PMC9330115 DOI: 10.1021/acsomega.1c07300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This article presents new possibilities of using thin films of lanthanide stearates as sorbent materials. Modification of the Q-sense device resonator with monolayers of lanthanide stearates by the Langmuir-Schaeffer method made it possible to study the process of insulin protein adsorption on the surface of new thin-film sorbents. The resulting films were also characterized by compression isotherms, chemical analysis, scanning electron microscopy, and mass spectrometry. The transition of stearic acid to salt was recorded by IR spectroscopy. Using the LDI MS method, the main component of thin films, lanthanide distearate, was established. The presence of Eu2+ in thin films was revealed. In the case of europium stearate, the maximum value of insulin adsorption was obtained, -1.67·10-10 mole/cm2. The findings suggest the possibility of using thin films of lanthanide stearates as a sorption material for the proteomics determination of the quantitative protein content in complex fluid systems by specific adsorption on modified surfaces and isolation of such proteins from complex mixtures.
Collapse
Affiliation(s)
- Olga Ladikan
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena Silyavka
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrei Mitrofanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Anastasia Laptenkova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Petr Kolonitckii
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Nikita Ivanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrey Remezov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Anna Fedorova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vassily Khripun
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Olga Pestova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina P. Podolskaya
- Golikov
Research Center of Toxicology, Bekhtereva Street 1, 192019 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Nikolai G. Sukhodolov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Artem A. Selyutin
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Shokurov AV, Yagodin AV, Martynov AG, Gorbunova YG, Tsivadze AY, Selektor SL. Octopus-Type Crown-Bisphthalocyaninate Anchor for Bottom-Up Assembly of Supramolecular Bilayers with Expanded Redox-Switching Capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104306. [PMID: 34655166 DOI: 10.1002/smll.202104306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Achievement of information storage at molecular level remains a pressing task in miniaturization of computing technology. One of the promising approaches for its practical realization is development of nanoscale molecular switching materials including redox-active systems. The present work demonstrates a concept of expansion of a number of available redox-states of self-assembled monolayers through supramolecular approach. For this, the authors synthesized an octopus-like heteroleptic terbium(III) bisphthalocyaninate bearing one ligand with eight thioacetate-terminated "tentacles" (octopus-Pc) and a ligand with four crown-ether moieties (H2 [(15C5)4 Pc]). It is shown that octopus-Pc forms stable monolayers on gold, where its face-on orientation allows for subsequent binding of crown-phthalocyanine molecules via potassium ion bridges. This chemistry is utilized to form a heterogeneous bilayer, in which a single molecule thick adlayer brings an additional redox-state to the system, thus expanding the multistability of the system as a whole. All four redox states available to this system exhibit characteristic absorbance in visible range, allowing for the switching to be easily read out using optical density measurements. The proposed approach can be used in wide range of switchable materials-single-molecule magnets, conductive, and optical devices, etc.
Collapse
Affiliation(s)
- Alexander V Shokurov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Alexey V Yagodin
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Sofiya L Selektor
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| |
Collapse
|
4
|
Shokurov AV, Kutsybala DS, Kroitor AP, Dmitrienko AA, Martynov AG, Enakieva YY, Tsivadze AY, Selektor SL, Gorbunova YG. Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface. Molecules 2021; 26:molecules26144155. [PMID: 34299430 PMCID: PMC8305922 DOI: 10.3390/molecules26144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)2, bearing two axial pyrazine ligands. The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordination upon lateral compression of the system, which helps bring the two macrocycles closer together and forces the formation of Ni–pyz bonds. The fact of Ni(II) porphyrinate switching from low- to high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of Ni–pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.
Collapse
Affiliation(s)
- Alexander V. Shokurov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
- Correspondence: (A.V.S.); (Y.G.G.)
| | - Daria S. Kutsybala
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
| | - Andrey P. Kroitor
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
| | - Alexander A. Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia;
| | - Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
| | - Yulia Yu. Enakieva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia
| | - Sofiya L. Selektor
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, 119071 Moscow, Russia; (D.S.K.); (A.P.K.); (A.G.M.); (Y.Y.E.); (A.Y.T.); (S.L.S.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia
- Correspondence: (A.V.S.); (Y.G.G.)
| |
Collapse
|
5
|
Grishina AD, Gorbunova YG, Zolotarevsky VI, Pereshivko LY, Enakieva YY, Krivenko TV, Savelyev V, Vannikov AV, Tsivadze AY. Solvent-induced supramolecular assemblies of crown-substituted ruthenium phthalocyaninate: morphology of assemblies and non-linear optical properties. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The information concerning the architecture of supramolecular assemblies, which are composed of ruthenium(II) tetra-15-crown-5-phthalocyaninate with axially coordinated triethylenediamine molecules, has been obtained with the application of atomic force microscopy. The ensembles are formed in Ru ( II ) complex solutions in chloroform and tetrachloroethane. The number of molecules and their relative orientation in supramolecular assemblies were estimated in dependence of the solvent (chloroform, tetrachloroethane) and the heating temperature. Samples fabricated after heating of the Ru ( II ) complexes solution in tetrachloroethane formed stable supramolecular wires of 600 nm and more in length. The third-order non-linear optical characteristics of complexes in tetrachloroethane solution were studied by the z-scanning method. Molecular polarizability of the complex is about 4.5 × 10-32 esu. The polarizability attributed to one molecule increases by a factor of 3.6 when the individual molecule assembles into a supramolecular aggregate.
Collapse
Affiliation(s)
- Antonina D. Grishina
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Yulia G. Gorbunova
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
- Russian Academy of Sciences, Kurnakov Institute of General & Inorganic Chemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Victor I. Zolotarevsky
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Larisa Ya. Pereshivko
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Yulia Yu. Enakieva
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Tatiana V. Krivenko
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Vladimir Savelyev
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Anatoly V. Vannikov
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| | - Aslan Yu. Tsivadze
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry & Electrochemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
- Russian Academy of Sciences, Kurnakov Institute of General & Inorganic Chemistry, Leninsky pr., 31, Moscow, GSP-1, 119991, Russia
| |
Collapse
|
6
|
Selector S, Fedorova O, Lukovskaya E, Anisimov A, Fedorov Y, Tarasova N, Raitman O, Fages F, Arslanov V. Supramolecular Control of Photochemical and Electrochemical Properties of Two Oligothiophene Derivatives at the Air/Water Interface. J Phys Chem B 2012; 116:1482-90. [DOI: 10.1021/jp2074122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sophiya Selector
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow, 119991,GSP-1, Russia
| | - Olga Fedorova
- Chemistry Department of Moscow State University, 1-3 Leninskiye Gory, Moscow,
119991, GSP-1, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str., 28, Moscow, 119991,GSP-1, Russia
| | - Elena Lukovskaya
- Chemistry Department of Moscow State University, 1-3 Leninskiye Gory, Moscow,
119991, GSP-1, Russia
| | - Alexander Anisimov
- Chemistry Department of Moscow State University, 1-3 Leninskiye Gory, Moscow,
119991, GSP-1, Russia
| | - Yuri Fedorov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str., 28, Moscow, 119991,GSP-1, Russia
| | - Nina Tarasova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow, 119991,GSP-1, Russia
| | - Oleg Raitman
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow, 119991,GSP-1, Russia
| | - Frederic Fages
- CINaM UPR 3118 CNRS - Universite de la Méditerranée, Campus
de Luminy, Case 913, Marseille, 13288 France
| | - Vladimir Arslanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow, 119991,GSP-1, Russia
| |
Collapse
|
7
|
Rawling T, McDonagh A. Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2006.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|