1
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Efremenko E, Aslanli A, Stepanov N, Senko O, Maslova O. Various Biomimetics, Including Peptides as Antifungals. Biomimetics (Basel) 2023; 8:513. [PMID: 37999154 PMCID: PMC10669293 DOI: 10.3390/biomimetics8070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
3
|
Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts 2021. [DOI: 10.3390/catal11091131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, the current advantages and disadvantages of using metal-containing nanocatalysts (NCs) for deep chemical oxidative desulfurization (ODS) of liquid fuels are reviewed. A similar analysis is performed for the oxidative biodesulfurization of oil along the 4S-pathway, catalyzed by various aerobic bacterial cells of microorganisms. The preferences of using NCs for the oxidation of organic sulfur-containing compounds in various oil fractions seem obvious. The text discusses the development of new chemical and biocatalytic approaches to ODS, including the use of both heterogeneous NCs and anaerobic microbial biocatalysts that catalyze the reduction of chemically oxidized sulfur-containing compounds in the framework of methanogenesis. The addition of anaerobic biocatalytic stages to the ODS of liquid fuel based on NCs leads to the emergence of hybrid technologies that improve both the environmental characteristics and the economic efficiency of the overall process. The bioconversion of sulfur-containing extracts from fuels with accompanying hydrocarbon residues into biogas containing valuable components for the implementation of C-1 green chemistry processes, such as CH4, CO2, or H2, looks attractive for the implementation of such a hybrid process.
Collapse
|
4
|
Maslova O, Senko O, Stepanov N, Gladchenko M, Gaydamaka S, Akopyan A, Polikarpova P, Lysenko S, Anisimov A, Efremenko E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. BIORESOURCE TECHNOLOGY 2021; 319:124248. [PMID: 33254470 DOI: 10.1016/j.biortech.2020.124248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A new solution for fossil raw materials desulfurization based on a hybrid chemical-biocatalytic scheme with biogas and sulfide production is proposed.·H2O2, formic acid and Na2MoO4 were used for petroleum or oil fractions pre-oxidation. Ethanol or dimethylformamide was used as extractant to remove sulfur-contained compounds from pre-oxidized straight-run diesel oil fraction, non-hydro treated vacuum gas oil, gas condensate or crude oil. Compositions of cells (anaerobic sludge, Desulfovibrio vulgaris, Clostridium acetobutilycum, Rhodococcus ruber, Rhodococcus erythropolis) were specially developed, immobilized in poly(vinyl alcohol) cryogel and used for methanogenic treatment of sulfur-containing extracts, diluted with phosphate buffer (pH 7.2) and hydrolysates of renewable raw materials. The sulfur coming into the reactor with the extracts was 100% converted to inorganic sulfide or cell biomass. The ratio of methane in the biogas was 68-76%. Bioluminescent express-methods were used to control the possible toxicity of media and metabolic activity of cells used as biocatalysts.
Collapse
Affiliation(s)
- Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Marina Gladchenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Sergey Gaydamaka
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Argam Akopyan
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Polina Polikarpova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Sergey Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander Anisimov
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia.
| |
Collapse
|
5
|
Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Zueva OS, Gubaidullin AT, Makarova AO, Bogdanova LR, Zakharova LY, Zuev YF. Structural features of composite protein-polysaccharide hydrogel in the presence of a carbon nanomaterial. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Hassan ME, Yang Q, Xiao Z, Liu L, Wang N, Cui X, Yang L. Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech 2019; 9:440. [PMID: 31750038 PMCID: PMC6841786 DOI: 10.1007/s13205-019-1969-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
The current demands of the world's biotechnological industries are enhancement in enzyme productivity and development of novel techniques for increasing their shelf life. Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immobilized enzyme systems allows an easy recovery of both enzymes and products, multiple reuse of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This review summarizes immobilization definition, different immobilization methods, advantages and disadvantages of each method. In addition, it covers some food industries, protein purification, human nutrition, biodiesel production, and textile industry. In these industries, the use of enzymes has become an inevitable processing strategy when a perfect end product is desired. It also can be used in many other important industries including health care and pharmaceuticals applications. One of the best uses of enzymes in the modern life is their application in diagnose and treatment of many disease especially when used in drug delivery system or when used in nanoform.
Collapse
Affiliation(s)
- Mohamed E. Hassan
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
- Center of Excellence, Encapsulation and Nano Biotechnology Group, Chemistry of Natural and Microbial Products Department, National Research Center, El Behouth Street, Cairo, 12622 Egypt
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| | - Lu Liu
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| | - Na Wang
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| | - Xiaotong Cui
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| | - Liu Yang
- College of Grain Science and Technology, Shenyang Normal University, Number 253 North Yellow River Road, Shenyang, 110034 China
| |
Collapse
|
8
|
|
9
|
Maslova O, Senko O, Stepanov N, Efremenko E. Perspective approaches with the use of biocatalysts for improving the processes of polyaspartic acid production from oil benzene fraction after oxidative desulfurization. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/525/1/012037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
|
11
|
Klushin VA, Kashparova VP, Kashparov IS, Chus YA, Chizhikova AA, Molodtsova TA, Smirnova NV. Efficient synthesis of diallyl esters of the furan series from fructose and preparation of copolymers on their basis. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2456-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|