1
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
3
|
Song Y, Zöllner HJ, Hui SCN, Hupfeld K, Oeltzschner G, Prisciandaro JJ, Edden R. Importance of Linear Combination Modeling for Quantification of Glutathione and γ-Aminobutyric Acid Levels Using Hadamard-Edited Magnetic Resonance Spectroscopy. Front Psychiatry 2022; 13:872403. [PMID: 35546940 PMCID: PMC9082488 DOI: 10.3389/fpsyt.2022.872403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background J-difference-edited 1H-MR spectra require modeling to quantify signals of low-concentration metabolites. Two main approaches are used for this spectral modeling: simple peak fitting and linear combination modeling (LCM) with a simulated basis set. Recent consensus recommended LCM as the method of choice for the spectral analysis of edited data. Purpose The aim of this study is to compare the performance of simple peak fitting and LCM in a test-retest dataset, hypothesizing that the more sophisticated LCM approach would improve quantification of Hadamard-edited data compared with simple peak fitting. Methods A test-retest dataset was re-analyzed using Gannet (simple peak fitting) and Osprey (LCM). These data were obtained from the dorsal anterior cingulate cortex of twelve healthy volunteers, with TE = 80 ms for HERMES and TE = 120 ms for MEGA-PRESS of glutathione (GSH). Within-subject coefficients of variation (CVs) were calculated to quantify between-scan reproducibility of each metabolite estimate. Results The reproducibility of HERMES GSH estimates was substantially improved using LCM compared to simple peak fitting, from a CV of 19.0-9.9%. For MEGA-PRESS GSH data, reproducibility was similar using LCM and simple peak fitting, with CVs of 7.3 and 8.8%. GABA + CVs from HERMES were 16.7 and 15.2%, respectively for the two models. Conclusion LCM with simulated basis functions substantially improved the reproducibility of GSH quantification for HERMES data.
Collapse
Affiliation(s)
- Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Steve C. N. Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - James J. Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Manzhurtsev A, Menschchikov P, Yakovlev A, Ublinskiy M, Bozhko O, Kupriyanov D, Akhadov T, Varfolomeev S, Semenova N. 3T MEGA-PRESS study of N-acetyl aspartyl glutamate and N-acetyl aspartate in activated visual cortex. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:555-568. [PMID: 33591453 DOI: 10.1007/s10334-021-00912-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To measure N-acetyl aspartyl glutamate (NAAG) and N-acetyl aspartate (NAA) concentrations in visual cortex activated by a continuous stimulation in a 3 T field. METHODS NAAG and NAA spectra were obtained with MEGA-PRESS pulse sequence (TE/TR = 140/2000 ms; δONNAAG/δOFFNAAG = 4.61/4.15 ppm; δONNAA/δOFFNAA = 4.84/4.38 ppm) in 14 healthy volunteers at rest and upon stimulation by a radial checkerboard flickering at a frequency of 8 Hz. Spectra of all subjects were frequency and phase aligned and then averaged. Additionally, to obtain the time-dependency data, spectra were divided into time sections of 64 s each. The intensities of NAA, NAAG and lactate + macromolecular (Lac + MM) signals were defined by integration of the real part of spectra. The heights of the central resonance of NAAG and NAA signals were measured. RESULTS The NAAG and NAA concentrations, measured with 2.5% and 0.5% error, respectively, were unaffected by visual activation. A significant increase in the Lac + MM signal by ~ 12% is clearly observed. No stimulation-induced time dependency was found for NAAG or NAA, while the increase in Lac + MM was gradual. The concentration values in visual cortex are in good agreement with the 7 T MRS measurements: [NAAG] = 1.55 mM, [NAA] = 11.95 mM. CONCLUSION The MEGA-PRESS pulse sequence together with the spectral preprocessing techniques allowed to demonstrate that the concentrations of NAAG and NAA in the visual cortex remain constant during continuous visual stimulation within the margin of error. An increase in the lactate signal intensity signifies the activation of the anaerobic glycolysis in activated visual cortex.
Collapse
Affiliation(s)
- Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation. .,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.
| | - Petr Menschchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Alexei Yakovlev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Olga Bozhko
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Dmitrii Kupriyanov
- LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Sergei Varfolomeev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| |
Collapse
|
5
|
Menshchikov P, Ivantsova A, Manzhurtsev A, Ublinskiy M, Yakovlev A, Melnikov I, Kupriyanov D, Akhadov T, Semenova N. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase. Magn Reson Med 2020; 84:2918-2931. [PMID: 32544309 DOI: 10.1002/mrm.28332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To separately measure N-acetyl aspartul glutamate (NAAG), N-acetyl aspartate (NAA), aspartate (Asp), and glutamate (Glu) concentrations in white matter (WM) using J-editing techniques in patients with mild traumatic brain injury (mTBI) in the acute phase. METHODS Twenty-four patients with closed concussive head injury and 29 healthy volunteers were enrolled in the current study. For extended 1 H MRS examination, patients and controls were equally divided into two subgroups. In subgroup 1 (12 patients/15 controls), NAAG and NAA concentrations were measured in WM separately with MEGA-PRESS (echo time/repetition time [TE/TR] = 140/2000 ms; δ ON NAA / δ OFF NAA = 4.84/4.38 ppm, δ ON NAAG / δ OFF NAAG = 4.61/4.15 ppm). In subgroup 2 (12 patients/14 controls), Asp and Glu concentrations were acquired with MEGA-PRESS (TE/TR = 90/2000 ms; δ ON Asp / δ OFF Asp = 3.89/5.21 ppm) and TE-averaged PRESS (TE from 35 ms to 185 ms with 2.5-ms increments; TR = 2000 ms) pulse sequences, respectively. RESULTS tNAA and NAAG concentrations were found to be reduced, while NAA concentrations were unchanged, after mild mTBI. Reduced Asp and elevated myo-inositol (mI) concentrations were also found. CONCLUSION The main finding of the study is that the tNAA signal reduction in WM after mTBI is associated with a decrease in the NAAG concentration rather than a decrease in the NAA concentration, as was thought previously. This finding highlights the importance of separating these signals, at least for WM studies, to avoid misinterpretation of the results. NAAG plays an important role in selectively activating mGluR3 receptors, thus providing neuroprotective and neuroreparative functions immediately after mTBI. NAAG shows potential for the development of new therapeutic strategies for patients with injuries of varying severity.
Collapse
Affiliation(s)
- Petr Menshchikov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Anna Ivantsova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Andrei Manzhurtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Alexey Yakovlev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Ilya Melnikov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | | | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Natalia Semenova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| |
Collapse
|
6
|
Menshchikov P, Manzhurtsev A, Ublinskiy M, Akhadov T, Semenova N. T
2
measurement and quantification of cerebral white and gray matter aspartate concentrations in vivo at 3T: a MEGA‐PRESS study. Magn Reson Med 2019; 82:11-20. [DOI: 10.1002/mrm.27700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Petr Menshchikov
- Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russian Federation
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Moscow Russian Federation
- Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology Moscow Russian Federation
| | - Andrei Manzhurtsev
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Moscow Russian Federation
- Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology Moscow Russian Federation
| | - Maxim Ublinskiy
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Moscow Russian Federation
- Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology Moscow Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology Moscow Russian Federation
| | - Natalia Semenova
- Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russian Federation
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Moscow Russian Federation
- Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology Moscow Russian Federation
| |
Collapse
|