1
|
Duggin M, Bissember AC, Fuller RO. Applications of Verdazyl Radicals in Energy Storage, Molecular Electronics and Magnetism: Teaching Old Molecules New Tricks. Chem Asian J 2025; 20:e202401550. [PMID: 39843396 DOI: 10.1002/asia.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Verdazyls are a fundamental class of stable organic radicals that have been traditionally overshadowed by the more synthetically accessible stable nitroxide radicals. With the advent of enhanced synthetic routes to verdazyls, particularly in recent years, these systems are now poised to realise their potential in a range of applications across emerging technologies that will be important to addressing challenges faced by modern society. This review discusses the enabling properties of a selection of verdazyl-based systems that feature promising applications in energy storage, molecular electronics and magnetic molecules. Emphasis is placed on progress in these areas over the past ~5 years.
Collapse
Affiliation(s)
- Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
2
|
Meckes JA, Schroeder ZW, Sarkar D, Hooper RW, Faraday-Smith CE, Brown A, Tykwinski RR, Michaelis VK. Verdazyl-Based Radicals for High-Field Dynamic Nuclear Polarization NMR. J Am Chem Soc 2025; 147:7293-7304. [PMID: 39982131 DOI: 10.1021/jacs.4c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
High-field dynamic nuclear polarization nuclear magnetic resonance (DNP NMR) spectroscopy transfers polarization from unpaired electrons in polarizing agents to nuclei of interest to boost NMR sensitivity. Verdazyl biradicals are a promising choice as polarizing agents because they have been found to generate narrower electron paramagnetic resonance (EPR) signals compared to nitroxide biradicals; an advantageous characteristic for high-field DNP when operating above 400 MHz/263 GHz. The use of verdazyl radicals as DNP polarizing agents has been very limited to date, yet, recent numerical simulations have predicted that verdazyl-nitroxide hybrid biradicals could be more effective polarizing agents than nitroxide-nitroxide biradicals. Herein, the syntheses of a series of verdazyl mono- and biradicals, as well as verdazyl-nitroxide biradicals are described. These radicals were examined in high-field DNP NMR experiments (600 MHz/395 GHz), by measuring 1H signal enhancements directly and through 13C{1H} cross-polarization experiments. X-band EPR, 1H DNP field profiles, and experiments to determine the nuclear build-up times were performed for verdazyl-nitroxide biradicals VerTEMPol and VerTEKol. These hybrid biradicals provide enhancements of up to 100-fold increased signal intensities (i.e., representing >104-fold time savings), approximately four times higher than that of the nitroxide biradical TEKPol, a commonly used polarizing agent in the field.
Collapse
Affiliation(s)
- Jakob A Meckes
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Zachary W Schroeder
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
3
|
Duggin M, Olivier WJ, Canty AJ, Lim LF, Cox N, Turner GF, Moggach SA, Thickett SC, Bissember AC, Fuller RO. Lawesson's Reagent: Providing a New Approach to the Forgotten 6-Thioverdazyl Radical. J Org Chem 2024; 89:9405-9419. [PMID: 38865165 DOI: 10.1021/acs.joc.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A new method for the preparation of the underrepresented 1,5-dimethyl-6-thioverdazyl radicals has been developed employing Lawesson's reagent (LR). The synthetic route involves the direct thionation of the carbonyl group of the corresponding dialkylbishydrazone followed by cyclization to give the tetrazinanthione verdazyl precursor on a gram scale. Subsequent oxidation yields the 6-thioverdazyl radical. It was determined that thionation of substrates containing electron-withdrawing groups in the ortho- or para-positions was high yielding. In contrast, for the parent phenyl group or substrates bearing weakly electron-donating substituents, thionation efficiency was significantly reduced. This could be overcome by utilizing partial in situ cyclization, which occurs during work up, to generate the tetrazinanthione directly via a one-pot synthesis. Density functional theory suggests that the LR fragment interacts with the carbonyl prior to cycloaddition and subsequent to cycloreversion, leading to the thiocarbonyl. The electronic nature of the radical is characterized with electron paramagnetic resonance as well as the first report of 6-thioverdazyl redox properties.
Collapse
Affiliation(s)
- Margot Duggin
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Wesley J Olivier
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Allan J Canty
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Li Feng Lim
- Research School of Chemistry, The Australia National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Canberra, Australian Capital Territory 2601, Australia
| | - Gemma F Turner
- School of Molecular Sciences─Chemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Stephen A Moggach
- School of Molecular Sciences─Chemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Stuart C Thickett
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Rebecca O Fuller
- School of Natural Sciences─Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Zayakin I, Romanenko G, Bagryanskaya I, Ugrak B, Fedin M, Tretyakov E. Catalytic System for Cross-Coupling of Heteroaryl Iodides with a Nitronyl Nitroxide Gold Derivative at Room Temperature. Molecules 2023; 28:7661. [PMID: 38005383 PMCID: PMC10675334 DOI: 10.3390/molecules28227661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
A simple and highly effective methodology for the cross-coupling of heteroaryl iodides with NN-AuPPh3 at room temperature is reported. The protocol is based on a novel catalytic system consisting of Pd2(dba)3·CHCl3 and the phosphine ligand MeCgPPh having an adamantane-like framework. The present protocol was found to be well compatible with various heteroaryl iodides, thus opening new horizons in directed synthesis of functionalized nitronyl nitroxides and high-spin molecules.
Collapse
Affiliation(s)
- Igor Zayakin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (I.Z.); (B.U.)
| | - Galina Romanenko
- International Tomography Center, Institutskaya Str. 3a, Novosibirsk 630090, Russia;
| | - Irina Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russia;
| | - Bogdan Ugrak
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (I.Z.); (B.U.)
| | - Matvey Fedin
- International Tomography Center, Institutskaya Str. 3a, Novosibirsk 630090, Russia;
| | - Evgeny Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (I.Z.); (B.U.)
| |
Collapse
|
5
|
Steen JS, de Vries F, Hjelm J, Otten E. Bipolar Verdazyl Radicals for Symmetrical Batteries: Properties and Stability in All States of Charge. Chemphyschem 2023; 24:e202200779. [PMID: 36317641 DOI: 10.1002/cphc.202200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/27/2022]
Abstract
Redox flow batteries based on organic electrolytes are promising energy storage devices, but stable long-term cycling is often difficult to achieve. Bipolar organic charge-storage materials allow the construction of symmetrical flow batteries (i. e., with identical electrolyte composition on both sides), which is a strategy to mitigate crossover-induced degradation. One such class of bipolar compounds are verdazyl radicals, but little is known on their stability/reactivity either as the neutral radical, or in the charged states. Here, we study the chemical properties of a Kuhn-type verdazyl radical (1) and the oxidized/reduced form (1+/- ). Chemical synthesis of the three redox-states provides spectroscopic characterization data, which are used as reference for evaluating the composition of the electrolyte solutions of an H-cell battery during/after cycling. Our data suggest that, rather than the charged states, the decomposition of the parent verdazyl radical is responsible for capacity fade. Kinetic experiments and DFT calculations provide insight in the decomposition mechanism, which is shown to occur by bimolecular disproportionation to form two closed-shell products (leuco-verdazyl 1H and triazole derivative 2).
Collapse
Affiliation(s)
- Jelte S Steen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Johan Hjelm
- Department of Energy Conversion and Storage (DTU Energy), Technical University of Denmark, Fysikvej, Building 310, 2800, Kgs Lyngby, Denmark
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Roy S, Paul S, Misra A. A Theoretical Account of the Coupling between Metal- and Ligand-centred Spins. Chemphyschem 2023; 24:e202200889. [PMID: 36622254 DOI: 10.1002/cphc.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.
Collapse
Affiliation(s)
- Sriparna Roy
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 R.C Sarani, Kolkata, 700009, India
| | - Anirban Misra
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| |
Collapse
|
7
|
Synthesis of S-substituted 5-sulfonylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Kostryukov SG, Kozlov AS, Konushkin IA, Krasnov DA, Yantsen NV. Modified Synthesis of 1-(4-R1-Phenyl)-3-(4-R2-phenyl)-5-phenylverdazyls. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Computational search for radical-bearing stilbene derivatives with switchable magnetic properties. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Votkina DE, Rollet M, Trusova ME, Audran G, Marque SRA, Petunin PV, Postnikov PS. 2,4,5,6-Substituted 4,5-dihydro-1,2,4,5-tetrazin-3(2H)-ones as non-classical initiators of controlled radical polymerization of styrene. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Blagov MA, Krapivin VB, Simonov SV, Spitsyna NG. A relationship between the coordination octahedron parameters and ligand conformation during spin transition in the cationic complex [N, N′-3,6-diazaoctane-1,8-diylbis(salicylidenaldiminato)]iron(iii) [FeIII(Sal2trien)]+. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Lipunova GN, Fedorchenko TG, Chupakhin ON. Verdazyls in Coordination Chemistry. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422070065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kostryukov SG, Kozlov AS, Konushkin IA, Asfandeev AY, Savrasov KV, Yantsen NV. Synthesis of 3-Aryl(pyridin-4-yl)-1-(4-R-phenyl)-5-phenyl-5,6-dihydro-1,2,4,5-tetrazinium Triflates and 6-Aryl(pyridin-4-yl)-4-phenyl-2-(4-R-phenyl)-1,2,3,4-tetrahydro-1,2,4,5-tetrazinyls. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3347-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Kostryukov SG, Tezikova VS, Kozlov AS, Masterova YY, Jassim T, Alalwan DHK. Synthesis of 1,1′-([1,1′-Biphenyl]-4,4′-diyl)bis(3-aryl-5-phenylformazans) and 1,1′-([1,1′-Biphenyl]-4,4′-diyl)bis(3-aryl-5-phenyl-5,6-dihydro-1,2,4,5-tetrazin-1-ium) Perchlorates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
The adequacy of the observed kinetic order in catalyst and the differential selectivity patterns to the hypothesis of the cooperative mechanism of catalysis of the Suzuki—Miyaura reaction. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3267-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kostryukov SG, Kozlov AS, Krasnov DA, Burtasov AA, Petrov PS, Tezikova VS, Asfandeev AY, Idris TD. Synthesis of Symmetric Binuclear 5,6-Dihydro-1,2,4,5-tetrazinium Perchlorates. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s107036322104006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|