1
|
Kuncharoen N, Bunbamrung N, Intaraudom C, Choowong W, Thawai C, Tanasupawat S, Pittayakhajonwut P. Antimalarial and antimicrobial substances isolated from the endophytic actinomycete, Streptomyces aculeolatus MS1-6. PHYTOCHEMISTRY 2023; 207:113568. [PMID: 36565946 DOI: 10.1016/j.phytochem.2022.113568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Seven undescribed compounds, including four naphthoquinone terpenoids (aculeolatins A - D), one rare 2-nitropyrrole terpenoid (nitropyrrolin F), and two hydroxamate siderophores (aculeolamides A and B) and one further undescribed compound (2,5,7-trihydroxy-3,6-dimethylnaphthalene-1,4-dione), together with eleven known compounds (arromycin, phenaziterpene A, nitropyrrolin A, heronapyrroles A and B, salaceyin A, 5,7-dihydroxy-2-isopropylchromone, 1-hydroxyphenazine, 1-methoxyphenazine, 1-acetyl-β-carboline, and N-(2-phenylethyl) acetamide), were isolated from the cultures of the endophytic Streptomyces aculeolatus MS1-6. The structures of the isolated compounds were determined using NMR spectroscopy and corroborated using chemical modification. These compounds exhibited a broad spectrum of biological activities, including antimalarial (IC50 6.03-9.84 μg/mL), antitubercular (MIC 3.13-6.25 μg/mL), anti-plant pathogenic fungal (MIC 25.0-50.0 μg/mL), and antibacterial (MIC 3.03-50 μg/mL) activities; however, they displayed unremarkable cytotoxicity against cancerous (MCF-7 and NCI-H187) and non-cancerous (Vero) cell lines.
Collapse
Affiliation(s)
- Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Wilunda Choowong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Antinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
2
|
Kuang QX, Luo Y, Lei LR, Guo WX, Li XA, Wang YM, Huo XY, Liu MD, Zhang Q, Feng D, Huang LJ, Wang D, Gu YC, Deng Y, Guo DL. Hydroanthraquinones from Nigrospora sphaerica and Their Anti-inflammatory Activity Uncovered by Transcriptome Analysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1474-1485. [PMID: 35696541 DOI: 10.1021/acs.jnatprod.1c01141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yan Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Li-Rong Lei
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wen-Xiu Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xin-Ai Li
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yu-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xue-Yan Huo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng-Dan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Li-Jun Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire RG42 6EY, U.K
| | - Yun Deng
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Da-Le Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|