1
|
Huang J, Yang T, Wang L, Lv W, Huang H, Lu T, Feng G. The carbonyl-sulfur chalcogen bonding interaction: Rotational spectroscopic study of the 2,2,4,4-tetrafluoro-1,3-dithietane···formaldehyde complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125059. [PMID: 39232311 DOI: 10.1016/j.saa.2024.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The rotational spectrum of a binary molecular cluster consisting of 2,2,4,4-tetrafluoro-1,3-dithietane (C2S2F4) and formaldehyde (H2CO) was studied by means of high-resolution Fourier transform microwave spectroscopy in conjunction with quantum chemical calculations. One of the three isomers predicted at the B3LYP-D3(BJ)/def2-TZVP level of theory was successfully detected in the supersonic expansion. Theoretical analyses using the non-covalent interactions and natural bond orbital methods reveal that the observed isomer is primarily stabilized by one C=O⋯S chalcogen bond and two C-H⋯F hydrogen bonds. The distance between the oxygen atom of H2CO and the nearest sulfur atom of C2S2F4 within the observed isomer is 2.9260(1) Å and the angle ∠O⋯S-C is 161.83(1)°. The analysis utilizing the symmetry-adapted perturbation theory approach demonstrates that electrostatic interactions play a significant role in stabilizing the studied complex, with the contribution of dispersion interactions being comparable to that of electrostatic ones.
Collapse
Affiliation(s)
- Jinxi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Liuting Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Wenqi Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Haiying Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Tao Lu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China.
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China.
| |
Collapse
|
2
|
Carugo OI. Chalcogen bonds formed by protein sulfur atoms in proteins. A survey of high-resolution structures deposited in the protein data bank. J Biomol Struct Dyn 2023; 41:9576-9582. [PMID: 36342326 DOI: 10.1080/07391102.2022.2143427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The presence of chalcogen bonds in native proteins was investigated on a non-redundant and high-resolution (≤ 1 Angstrom) set of protein crystal structures deposited in the Protein Data Bank. It was observed that about one half of the sulfur atoms of methionines and disulfide bridges from chalcogen bonds with nucleophiles (oxygen and sulfur atoms, and aromatic rings). This suggests that chalcogen bonds are a non-bonding interaction important for protein stability. Quite numerous chalcogen bonds involve water molecules. Interestingly, in the case of disulfide bridges, chalcogen bonds have a marked tendency to occur along the S-S bond extension rather than along the C-S bond extension. Additionally, it has been observed that closer residues have a higher probability of being connected by a chalcogen bonds, while the secondary structure of the two residues connected by a chalcogen bond do not correlate with its formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oliviero Italo Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Abstract
ConspectusThe exploration of new catalysis concepts and strategies to drive chemical reactions is of vital importance for the sustainable development of organic synthesis. Recently, chalcogen bonding catalysis has emerged as a new concept for organic synthesis and has been demonstrated to be an important synthetic tool capable of addressing elusive reactivity and selectivity issues. This Account describes our progress in the research field of chalcogen bonding catalysis, including (1) the discovery of phosphonium chalcogenide (PCH) as highly efficient chalcogen bonding catalyst; (2) the development of "chalcogen-chalcogen bonding catalysis" and "chalcogen···π bonding catalysis" modes; (3) the demonstration that chalcogen bonding catalysis with PCH can activate hydrocarbons to achieve cyclization and coupling reactions of alkenes; (4) the discovery of unusual results that chalcogen bonding catalysis with PCH can solve elusive reactivity and selectivity issues that are inaccessible by classic catalysis approaches; and (5) the elucidation of chalcogen bonding mechanisms.With PCH catalysts, we systematically studied their chalcogen bonding properties, the relationship between structure and catalysis, and their application in facilitating a diverse array of reactions. Enabled by chalcogen-chalcogen bonding catalysis, an efficient assembly reaction of three molecules of β-ketoaldehyde and one indole derivative in a single operation was realized, delivering heterocycles with a newly constructed seven-membered ring. In addition, a Se···O bonding catalysis approach achieved an efficient synthesis of calix[4]pyrroles. We developed a "dual chalcogen bonding catalysis" strategy to solve reactivity and selectivity issues in the Rauhut-Currier-type reactions and related cascade cyclizations, thus shifting conventionally covalent Lewis base catalysis to a cooperative Se···O bonding catalysis approach. This strategy enables the cyanosilylation of ketones to take place in the presence of a ppm-level amount of PCH catalyst loading. Furthermore, we established chalcogen···π bonding catalysis for catalytic transformation of alkenes. In the research field of supramolecular catalysis, the activation of hydrocarbons such as alkenes by weak interactions is a highly interesting unresolved topic. We showed that the Se···π bonding catalysis approach could efficiently activate alkenes to achieve both coupling and cyclization reactions. Chalcogen···π bonding catalysis with PCH catalysts is particularly highlighted by the capability of facilitating strong Lewis-acid inaccessible transformations, such as the controlled cross coupling of triple alkenes. Overall, this Account presents a panoramic view of our research on chalcogen bonding catalysis with PCH catalysts. The works described in this Account provide a significant platform to solve synthetic problems.
Collapse
Affiliation(s)
- Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Carugo O. Interplay between hydrogen and chalcogen bonds in cysteine. Proteins 2023; 91:395-399. [PMID: 36250971 PMCID: PMC10092013 DOI: 10.1002/prot.26437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen donors and a chalcogen bond with a nucleophile along the extension of the CS bond. A survey of the Protein Data Bank shows that hydrogen bonds are about 40-50 more common than chalcogen bonds, suggesting that they are stronger and, consequently, prevail, though not always. It is also observed that frequently a thiol group that forms a chalcogen bond is also involved, as a hydrogen donor, in a hydrogen bond.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy.,Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Pale P, Mamane V. Chalcogen Bonds: How to Characterize Them in Solution? Chemphyschem 2023; 24:e202200481. [PMID: 36205925 DOI: 10.1002/cphc.202200481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Indexed: 11/08/2022]
Abstract
Chalcogen bonds (ChBs) occur between molecules containing Lewis acidic chalcogen substituents and Lewis bases. Recently, ChB emerged as a pivotal interaction in solution-based applications such as anion recognition, anion transport and catalysis. However, before moving to applications, the involvement of ChB must be established in solution. In this Concept article, we provide a brief review of the currently available experimental investigations of ChB in solution.
Collapse
Affiliation(s)
- Patrick Pale
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
6
|
Abstract
The chalcogen Y atom in the aromatic ring of thiophene and its derivatives YC4H4 (Y = S, Se, Te) can engage in a number of different interactions with another such unit within the homodimer. Quantum calculations show that the two rings can be oriented perpendicular to one another in a T-shaped dimer in which the Y atom accepts electron density from the π-system of the other unit in a Y···π chalcogen bond (ChB). This geometry best takes advantage of attractions between the electrostatic potentials surrounding the two monomers. There are two other geometries in which the two Y atoms engage in a ChB with one another. However, instead of a simple interaction between a σ-hole on one Y and the lone pair of its neighbor, the interaction is better described as a pair of symmetrically equivalent Y···Y interactions, in which charge is transferred in both directions simultaneously, thereby effectively doubling the strength of the bond. These geometries differ from what might be expected based simply on the juxtaposition of the electrostatic potentials of the two monomers.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
7
|
Wu H, Lu Y, Peng C, Xu Z, Liu H. Theoretical study of the interplay between double chalcogen-bonding interactions and halogen bonds in ditopic molecular module systems. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
9
|
Wang W, Zhu H, Feng L, Yu Q, Hao J, Zhu R, Wang Y. Dual Chalcogen–Chalcogen Bonding Catalysis. J Am Chem Soc 2020; 142:3117-3124. [DOI: 10.1021/jacs.9b12610] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Haofu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qun Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Veljković IS, Veljković DŽ, Sarić GG, Stanković IM, Zarić SD. What is the preferred geometry of sulfur–disulfide interactions? CrystEngComm 2020. [DOI: 10.1039/d0ce00211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined crystallographic and quantum chemical studies showed that in most cases, in crystal structures, interactions between sulphur atoms and disulphide bonds are bifurcated.
Collapse
Affiliation(s)
- Ivana S. Veljković
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | | | - Ivana M. Stanković
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | |
Collapse
|
11
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Theoretical Studies of IR and NMR Spectral Changes Induced by Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, and Tetrel Bonds in a Model Protein Environment. Molecules 2019; 24:E3329. [PMID: 31547416 PMCID: PMC6767630 DOI: 10.3390/molecules24183329] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/27/2023] Open
Abstract
Various types of σ-hole bond complexes were formed with FX, HFY, H2FZ, and H3FT (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) as Lewis acid. In order to examine their interactions with a protein, N-methylacetamide (NMA), a model of the peptide linkage was used as the base. These noncovalent bonds were compared by computational means with H-bonds formed by NMA with XH molecules (X = F, Cl, Br, I). In all cases, the A-F bond, which lies opposite the base and is responsible for the σ-hole on the A atom (A refers to the bridging atom), elongates and its stretching frequency undergoes a shift to the red with a band intensification, much as what occurs for the X-H bond in a H-bond (HB). Unlike the NMR shielding decrease seen in the bridging proton of a H-bond, the shielding of the bridging A atom is increased. The spectroscopic changes within NMA are similar for H-bonds and the other noncovalent bonds. The C=O bond of the amide is lengthened and its stretching frequency red-shifted and intensified. The amide II band shifts to higher frequency and undergoes a small band weakening. The NMR shielding of the O atom directly involved in the bond rises, whereas the C and N atoms both undergo a shielding decrease. The frequency shifts of the amide I and II bands of the base as well as the shielding changes of the three pertinent NMA atoms correlate well with the strength of the noncovalent bond.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
12
|
Kurczab R, Śliwa P, Rataj K, Kafel R, Bojarski AJ. Salt Bridge in Ligand-Protein Complexes-Systematic Theoretical and Statistical Investigations. J Chem Inf Model 2018; 58:2224-2238. [PMID: 30351056 DOI: 10.1021/acs.jcim.8b00266] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand-receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS-NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.
Collapse
Affiliation(s)
- Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Paweł Śliwa
- Faculty of Chemical Engineering and Technology , Cracow University of Technology , Warszawska 24 , 31-155 Cracow , Poland
| | - Krzysztof Rataj
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Rafał Kafel
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| |
Collapse
|
13
|
Yan XC, Robertson MJ, Tirado-Rives J, Jorgensen WL. Improved Description of Sulfur Charge Anisotropy in OPLS Force Fields: Model Development and Parameterization. J Phys Chem B 2017. [PMID: 28627890 DOI: 10.1021/acs.jpcb.7b04233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The atomic point-charge model used in most molecular mechanics force fields does not represent well the electronic anisotropy that is featured in many directional noncovalent interactions. Sulfur participates in several types of such interactions with its lone pairs and σ-holes. The current study develops a new model, via the addition of off-atom charged sites, for a variety of sulfur compounds in the OPLS-AA and OPLS/CM5 force fields to address the lack of charge anisotropy. Parameter optimization is carried out to reproduce liquid-state properties, torsional and noncovalent energetics from reliable quantum mechanical calculations, and electrostatic potentials. Significant improvements are obtained for computed free energies of hydration, reducing the mean unsigned errors from ca. 1.4 to 0.4-0.7 kcal/mol. Enhanced accuracy in directionality and energetics is also obtained for molecular complexes with sulfur-containing hydrogen and halogen bonds. Moreover, the new model reproduces the unusual conformational preferences of sulfur-containing compounds with 1,4-intramolecular chalcogen bonds. Transferability of the new force field parameters to cysteine and methionine is verified via molecular dynamic simulations of blocked dipeptides. The study demonstrates the effectiveness of using off-atom charge sites to address electronic anisotropy, and provides a parametrization methodology that can be applied to other systems.
Collapse
Affiliation(s)
- Xin Cindy Yan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Michael J Robertson
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
14
|
Giroud M, Ivkovic J, Martignoni M, Fleuti M, Trapp N, Haap W, Kuglstatter A, Benz J, Kuhn B, Schirmeister T, Diederich F. Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide⋅⋅⋅Heteroarene π-Stacking Interactions and Chalcogen Bonding in the S3 Pocket. ChemMedChem 2017; 12:257-270. [DOI: 10.1002/cmdc.201600563] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jakov Ivkovic
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Mara Martignoni
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Marianne Fleuti
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Wolfgang Haap
- F. Hoffmann-La Roche Ltd.; Pharma Research and Early Development (pRED); Therapeutic Modalities; Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Andreas Kuglstatter
- F. Hoffmann-La Roche Ltd.; Pharma Research and Early Development (pRED); Therapeutic Modalities; Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Jörg Benz
- F. Hoffmann-La Roche Ltd.; Pharma Research and Early Development (pRED); Therapeutic Modalities; Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Bernd Kuhn
- F. Hoffmann-La Roche Ltd.; Pharma Research and Early Development (pRED); Therapeutic Modalities; Roche Innovation Center Basel; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Germany
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
15
|
Koebel MR, Cooper A, Schmadeke G, Jeon S, Narayan M, Sirimulla S. S···O and S···N Sulfur Bonding Interactions in Protein-Ligand Complexes: Empirical Considerations and Scoring Function. J Chem Inf Model 2016; 56:2298-2309. [PMID: 27936771 DOI: 10.1021/acs.jcim.6b00236] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur bonding interactions between organosulfur compounds and proteins were examined using crystal structures deposited to-date in the PDB. The data was analyzed as a function of sulfur-σ-hole-bonding (i.e., sulfur bonds) to main chain Lewis bases, viz. oxygen and nitrogen atoms of the backbone amide linkages. The analyses also included an examination of sulfur bonding to side chain Lewis bases (O, N, and S) and to the "non-classical" Lewis bases present in electron-rich aromatic amino acids as-well-as to donor-acceptor bond angle distributions. The interactions analyzed included those restricted to the sum of van der Waals radii of the respective atoms or to a distance of 4 Å. The surveyed data revealed that sulfur bonding tendencies (C-S-C bond angles) were impacted not only by steric effects but perhaps also by enthalpic features present in both the donor and acceptor participants. This knowledge is not only of fundamental interest but is also important in terms of materials and drug-design involving moieties incorporating the sulfur atom. Additionally, a new empirical scoring function was developed to address the anisotropy of sulfur in protein-ligand interactions. This newly developed scoring function is incorporated into AutoDock Vina molecular docking program and is valuable for modeling and drug design.
Collapse
Affiliation(s)
- Mathew R Koebel
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| | - Aaron Cooper
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| | | | | | | | - Suman Sirimulla
- Department of Basic Sciences, St. Louis College of Pharmacy , St. Louis, Missouri 63110, United States
| |
Collapse
|
16
|
Kapoor K, Duff MR, Upadhyay A, Bucci JC, Saxton AM, Hinde RJ, Howell EE, Baudry J. Highly Dynamic Anion-Quadrupole Networks in Proteins. Biochemistry 2016; 55:6056-6069. [PMID: 27753291 DOI: 10.1021/acs.biochem.6b00624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.
Collapse
Affiliation(s)
- Karan Kapoor
- UT/ORNL Graduate School of Genome Science and Technology, University of Tennessee , F337 Walters Life Science, Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Building 2040, Oak Ridge, Tennessee 37830, United States
| | - Michael R Duff
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , M407 Walters Life Sciences, Knoxville, Tennessee 37996, United States
| | - Amit Upadhyay
- UT/ORNL Graduate School of Genome Science and Technology, University of Tennessee , F337 Walters Life Science, Knoxville, Tennessee 37996, United States
| | - Joel C Bucci
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , M407 Walters Life Sciences, Knoxville, Tennessee 37996, United States
| | - Arnold M Saxton
- Department of Animal Science, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Robert J Hinde
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Elizabeth E Howell
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , M407 Walters Life Sciences, Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , M407 Walters Life Sciences, Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Building 2040, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
17
|
Saberinasab M, Salehzadeh S, Solimannejad M. The effect of a strong cation⋯π interaction on a weak selenium⋯π interaction: A theoretical study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
19
|
Dual functions of Lewis acid and base of Se in F2C=Se and their interplay in F 2CSe•••NH 3•••HX. J Mol Model 2015; 21:157. [PMID: 26016943 DOI: 10.1007/s00894-015-2701-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
High-level quantum chemical calculations of the ternary systems F2CSe∙∙∙NH3∙∙∙HX (X=BeH, BH2, OH, CN, OCH3, Cl, and F) and the corresponding binary systems have been carried out in view of geometries, vibrational frequencies, interaction energies, orbital interactions, and electron densities. The molecular electrostatic potentials of F2CSe demonstrate that the Se atom could play a dual role of Lewis acid and base to form a chalcogen bond with NH3 and a hydrogen bond or a covalent interaction with HX, respectively. The chalcogen bond can compete with the hydrogen bond for the complexes involving F2CSe, but the covalent interaction is far stronger than the chalcogen bond. In the ternary complexes, both types of interactions are strengthened by each other, characterized by a shorter binding distance, a larger electron density, and a stronger orbital interaction. The covalent interaction has a greater enhancing effect on the chalcogen bond than the hydrogen bond does, resulting in a prominent shortening of ~0.23 Å distance for the Se∙∙∙N distance in F2CSe∙∙∙NH3∙∙∙BH3. The enhancement of both interactions in the ternary complexes has been understood with the electrostatic potentials and orbital interactions. Graphical Abstract The dual functions of Lewis acid and base of Se in F2CSe are enhanced each other in the ternary complexes.
Collapse
|
20
|
Nziko VDPN, Scheiner S. S···π Chalcogen Bonds between SF2 or SF4 and C–C Multiple Bonds. J Phys Chem A 2015; 119:5889-97. [DOI: 10.1021/acs.jpca.5b03359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vincent de Paul N. Nziko
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
21
|
Chalcogen-bonded complexes. Selenium-bound adducts of NH3, H2O, PH3, and H2S with OCSe, SCSe, and CSe2. J Mol Model 2015; 21:35. [DOI: 10.1007/s00894-014-2562-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
|
22
|
Azofra LM, Scheiner S. Substituent Effects in the Noncovalent Bonding of SO2 to Molecules Containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond. J Phys Chem A 2014; 118:3835-3845. [DOI: 10.1021/jp501932g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
23
|
Adhikari U, Scheiner S. Effects of Charge and Substituent on the S···N Chalcogen Bond. J Phys Chem A 2014; 118:3183-92. [DOI: 10.1021/jp501449v] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Upendra Adhikari
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
24
|
σ-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures. CRYSTALS 2014. [DOI: 10.3390/cryst4010012] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Florès JC, Lacour MA, Sallenave X, Serein-Spirau F, Lère-Porte JP, Moreau JJE, Miqueu K, Sotiropoulos JM, Flot D. Comprehensive Analysis of Fragment Orbital Interactions to Build Highly π-Conjugated Thienylene-Substituted Phenylene Oligomers. Chemistry 2013; 19:7532-46. [DOI: 10.1002/chem.201203869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 11/10/2022]
|
26
|
Politzer P, Murray JS. Halogen Bonding: An Interim Discussion. Chemphyschem 2013; 14:278-94. [DOI: 10.1002/cphc.201200799] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 11/10/2022]
|
27
|
Politzer P, Murray JS, Clark T. Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 2013; 15:11178-89. [DOI: 10.1039/c3cp00054k] [Citation(s) in RCA: 1221] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Scheiner S. Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 2013. [DOI: 10.1039/c2ce26393a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Adhikari U, Scheiner S. Contributions of Various Noncovalent Bonds to the Interaction between an Amide and S-Containing Molecules. Chemphyschem 2012; 13:3535-41. [DOI: 10.1002/cphc.201200412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Indexed: 01/13/2023]
|
30
|
Iwaoka M, Isozumi N. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 2012; 17:7266-83. [PMID: 22695232 PMCID: PMC6269016 DOI: 10.3390/molecules17067266] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
In organic molecules a divalent sulfur atom sometimes adopts weak coordination to a proximate heteroatom (X). Such hypervalent nonbonded S···X interactions can control the molecular structure and chemical reactivity of organic molecules, as well as their assembly and packing in the solid state. In the last decade, similar hypervalent interactions have been demonstrated by statistical database analysis to be present in protein structures. In this review, weak interactions between a divalent sulfur atom and an oxygen or nitrogen atom in proteins are highlighted with several examples. S···O interactions in proteins showed obviously different structural features from those in organic molecules (i.e., π(o) → σ(s)* versus n(o) → σ(s)* directionality). The difference was ascribed to the HOMO of the amide group, which expands in the vertical direction (π(o)) rather than in the plane (n(o)). S···X interactions in four model proteins, phospholipase A₂ (PLA₂), ribonuclease A (RNase A), insulin, and lysozyme, have also been analyzed. The results suggested that S···X interactions would be important factors that control not only the three-dimensional structure of proteins but also their functions to some extent. Thus, S···X interactions will be useful tools for protein engineering and the ligand design.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | | |
Collapse
|
31
|
Interplay of thermochemistry and Structural Chemistry, the journal (volume 22, 2011, issues 4–6) and the discipline. Struct Chem 2012. [DOI: 10.1007/s11224-012-0045-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Adhikari U, Scheiner S. Substituent Effects on Cl···N, S···N, and P···N Noncovalent Bonds. J Phys Chem A 2012; 116:3487-97. [DOI: 10.1021/jp301288e] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Upendra Adhikari
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300,
United States
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300,
United States
| |
Collapse
|
33
|
Adhikari U, Scheiner S. Comparison of P⋯D (D = P,N) with other noncovalent bonds in molecular aggregates. J Chem Phys 2011; 135:184306. [DOI: 10.1063/1.3660355] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
34
|
Scheiner S, Adhikari U. Abilities of Different Electron Donors (D) to Engage in a P···D Noncovalent Interaction. J Phys Chem A 2011; 115:11101-10. [DOI: 10.1021/jp2082787] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Upendra Adhikari
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|