1
|
Suha H, Tasnim SA, Rahman S, Alodhayb A, Albrithen H, Poirier RA, Uddin KM. Evaluating the Anticancer Properties of Novel Piscidinol A Derivatives: Insights from DFT, Molecular Docking, and Molecular Dynamics Studies. ACS OMEGA 2024; 9:49639-49661. [PMID: 39713673 PMCID: PMC11656217 DOI: 10.1021/acsomega.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by uncontrolled cell growth and spreading throughout the body. This study employed computational approaches to investigate 18 naturally derived anticancer piscidinol A derivatives (1-18) as potential therapeutics. By examining their interactions with 15 essential target proteins (HIF-1α, RanGAP, FOXM1, PARP2, HER2, ERα, NGF, FAS, GRP78, PRDX2, SCF complex, EGFR, Bcl-xL, ERG, and HSP70) and comparing them with established drugs such as camptothecin, docetaxel, etoposide, irinotecan, paclitaxel, and teniposide, compound 10 emerged as noteworthy. In molecular dynamics simulations, the protein with the strongest binding to the crucial 1A52 protein exceeded druglikeness criteria and displayed extraordinary stability within the enzyme's pocket over varied temperatures (300-320 K). Additionally, density functional theory was used to calculate dipole moments and molecular orbital characteristics, as well as analyze the thermodynamic stability of the putative anticancer derivatives. This finding reveals a well-defined, potentially therapeutic relationship supported by theoretical analysis, which is in good agreement with subsequent assessments of their potential in vitro cytotoxic effects of piscidinol A derivatives (6-18) against various cancer cell lines. Future in vivo and clinical studies are required to validate these findings further. Compound 10 thus emerges as an intriguing contender in the fight against cancer.
Collapse
Affiliation(s)
- Humaera
Noor Suha
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Syed Ahmed Tasnim
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raymond A. Poirier
- Department
of Chemistry, Memorial University, St. John’s, Newfoundland
and Labrador A1C 5S7, Canada
| | - Kabir M. Uddin
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
2
|
Quayum ST, Esha NJI, Siraji S, Abbad SSA, Alsunaidi ZH, Almatarneh MH, Rahman S, Alodhayb AN, Alibrahim KA, Kawsar SM, Uddin KM. Exploring the effectiveness of flavone derivatives for treating liver diseases: Utilizing DFT, molecular docking, and molecular dynamics techniques. MethodsX 2024; 12:102537. [PMID: 38299040 PMCID: PMC10828815 DOI: 10.1016/j.mex.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing in silico methodologies, we focus on flavone and its analogs (1-14) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties. The study further assesses these flavonoids' binding effectiveness and locations through molecular docking studies against six target proteins associated with human cancer. Tropoflavin and taxifolin served as reference drugs. The structurally modified flavone analogs (1-14) displayed a broad range of binding affinities, ranging from -7.0 to -9.4 kcal mol⁻¹, surpassing the reference drugs. Notably, flavonoid (7) exhibited significantly higher binding affinities with proteins Nrf2 (PDB:1 × 2 J) and DCK (PDB:1 × 2 J) (-9.4 and -8.1 kcal mol⁻¹) compared to tropoflavin (-9.3 and -8.0 kcal mol⁻¹) and taxifolin (-9.4 and -7.1 kcal mol⁻¹), respectively. Molecular dynamics (MD) simulations revealed that the docked complexes had a root mean square deviation (RMSD) value ranging from 0.05 to 0.2 nm and a root mean square fluctuation (RMSF) value between 0.35 and 1.3 nm during perturbation. The study concludes that 5,7-dihydroxyflavone (7) shows substantial promise as a potential therapeutic agent for liver-related conditions. However, further validation through in vitro and in vivo studies is necessary. Key insights from this study include:•Screening of flavanols and their derivatives to determine pharmacological and bioactive properties using ADMET, molinspiration, and pass prediction analysis.•Docking of shortlisted flavone derivatives with proteins having essential functions.•Analysis of the best protein-flavonoid docked complexes using molecular dynamics simulation to determine the flavonoid's efficiency and stability within a system.
Collapse
Affiliation(s)
- Syeda Tasnim Quayum
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Nusrat Jahan Ikbal Esha
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Siam Siraji
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Sanaa S. Al Abbad
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zainab H.A. Alsunaidi
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N. Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department of Chemistry, Princess Nora bint Abdulrahman University, College of Science, Riyadh, Al Riyadh, 11671, Saudi Arabia
| | - Sarkar M.A. Kawsar
- Lab of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| |
Collapse
|
3
|
Uddin KM, Sakib M, Siraji S, Uddin R, Rahman S, Alodhayb A, Alibrahim KA, Kumer A, Matin MM, Bhuiyan MMH. Synthesis of New Derivatives of Benzylidinemalononitrile and Ethyl 2-Cyano-3-phenylacrylate: In Silico Anticancer Evaluation. ACS OMEGA 2023; 8:25817-25831. [PMID: 37521603 PMCID: PMC10373203 DOI: 10.1021/acsomega.3c01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
In this study, microwave-assisted Knoevenagel condensation was used to produce two novel series of derivatives (1-6) from benzylidenemalononitrile and ethyl 2-cyano-3-phenylacrylate. The synthesized compounds were characterized using Fourier transform infrared (FT-IR) and 1H NMR spectroscopies. The pharmacodynamics, toxicity profiles, and biological activities of the compounds were evaluated through an in silico study using prediction of activity spectra for substances (PASS) and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies. According to the PASS prediction results, compounds 1-6 showed greater antineoplastic potency for breast cancer than other types of cancer. Molecular docking was employed to investigate the binding mode and interaction sites of the derivatives (1-6) with three human cancer targets (HER2, EGFR, and human FPPS), and the protein-ligand interactions of these derivatives were compared to those reference standards Tyrphostin 1 (AG9) and Tyrphostin 23 (A23). Compound 3 showed a stronger effect on two cell lines (HER2 and FPPS) than the reference drugs. A 20 ns molecular dynamics (MD) simulation was also conducted to examine the ligand's behavior at the active binding site of the modeled protein, utilizing the lowest docking energy obtained from the molecular docking study. Enthalpies (ΔH), Gibbs free energies (ΔG), entropies (ΔS), and frontier molecular orbital parameters (highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, hardness, and softness) were calculated to confirm the thermodynamic stability of all derivatives. The consistent results obtained from the in silico studies suggest that compound 3 has potential as a new anticancer and antiparasitic drug. Further research is required to validate its efficacy.
Collapse
Affiliation(s)
- Kabir M. Uddin
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mohiuddin Sakib
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Siam Siraji
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Riaz Uddin
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research
Chair for Tribology, Surface, and Interface Sciences, Department of
Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ajoy Kumer
- Department
of Chemistry, European University of Bangladesh, Gabtoli, Dhaka 1216, Bangladesh
| | - M. Mahbubul Matin
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md. Mosharef H. Bhuiyan
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
4
|
Mechanistic investigation of the deamination reaction of 6-thioguanine: a theoretical study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Theoretical study on the hydrolytic deamination reaction mechanism of guanine and (H2O)n. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Almatarneh MH, Omeir RA, AL Demour S, Elayan IA, Islam S, Poirier RA. Hydrolytic deamination mechanisms of guanosine monophosphate: A computational study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kessler FK, Schnick W. Ammelinium Sulfate Monohydrate and Ammelinium Sulfate Cyanuric Acid - Synthesis and Structural Characterization. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fabian K. Kessler
- Department of Chemistry; Chair in Inorganic Solid-State Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| | - Wolfgang Schnick
- Department of Chemistry; Chair in Inorganic Solid-State Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| |
Collapse
|
8
|
Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 5–6), and the discipline. Struct Chem 2018. [DOI: 10.1007/s11224-018-1217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|