1
|
Jiang H, Li Y, Wang Z, Li S, Wu T, Xiong F. 3D-QSAR, molecular docking, and molecular dynamics analysis of novel biphenyl-substituted pyridone derivatives as potent HIV-1 NNRTIs. J Biomol Struct Dyn 2023; 42:13603-13618. [PMID: 37909494 DOI: 10.1080/07391102.2023.2276885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
When designing new medications targeting HIV-1, drug designers concentrate on reverse transcriptase (RT), the central enzyme of their concern. This is due to its vital role in converting single-stranded RNA into double-stranded DNA throughout the life cycle of HIV-1. In recent reports, a series of newly discovered pyridone derivatives with biphenyl substitutions have emerged as highly potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), displaying impressive antiviral activity. To analyse the three-dimensional quantitative structure-activity relationship (3D-QSAR) of pyridone inhibitors with biphenyl substitutions, we employed CoMFA and CoMSIA methods in this study. The dataset comprises a total of 51 compounds. The findings of this research demonstrate that both the CoMFA (q2=0.688, r2=0.976, rpred2=0.831) and CoMSIA/SHE (q2=0.758, r2=0.968, rpred2=0.828) models exhibit excellent predictive capability and reliable estimation stability. According to the findings of the model, we designed a collection of eleven molecules that exhibit the potential for significantly improved predictive activity. We proceeded to investigate the binding patterns of these compounds to receptor proteins utilizing the molecular docking technique. To ensure the reliability of the docking results, we went on to validate them by conducting molecular dynamics simulations and performing accurate calculations of the binding free energy. Moreover, based on initial ADMET predictions, the results consistently indicate that the newly created molecule possesses favourable pharmacokinetic properties. This study will help to facilitate the development of efficient novel inhibitors that specifically target HIV-1's non-nucleoside reverse transcriptase (NNRTIs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huifang Jiang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yeji Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Zhonghua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Shaotong Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Tianle Wu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| |
Collapse
|
2
|
Liu G, Zhou C, Zhang Z, Wang C, Luo X, Ju X, Zhao C, Ozoe Y. Novel insecticidal 1,6-dihydro-6-iminopyridazine derivatives as competitive antagonists of insect RDL GABA receptors. PEST MANAGEMENT SCIENCE 2022; 78:2872-2882. [PMID: 35396824 DOI: 10.1002/ps.6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The ionotropic γ-aminobutyric acid (GABA) receptor (iGABAR) is an important target for insecticides and parasiticides. Our previous studies showed that competitive antagonists (CAs) of insect iGABARs have the potential to be used for developing novel insecticides and that the structural modification of gabazine (a representative CA of mammalian iGABARs) could lead to the identification of novel CAs of insect iGABARs. RESULTS In the present study, a novel series of 1,3-di- and 1,3,5-trisubstituted 1,6-dihydro-6-iminopyridazines (DIPs) was designed using a versatile strategy and synthesized using facile methods. Electrophysiological studies showed that several target DIPs (30 μM) exhibited excellent antagonistic activities against common cutworm and housefly iGABARs consisting of RDL subunits. The IC50 values of 3-(4-methoxyphenyl), 3-(4-trifluoromethoxyphenyl), 3-(4-biphenylylphenyl), 3-(2-naphthyl), 3-(3,4-methylenedioxyphenyl), and 3,5-(4-methoxyphenyl) analogs ranged from 2.2 to 24.8 μM. Additionally, several 1,3-disubstituted DIPs, especially 3-(4-trifluoromethoxyphenyl) and 3-(3,4-methylenedioxyphenyl) analogs, exhibited moderate insecticidal activity against common cutworm larvae, with >60% mortality at a concentration of 100 mg kg-1 . Molecular docking studies showed that the oxygen atom on the three-substituted aromatic ring could form a hydrogen bond with Arg254, which may enhance the activity of these DIPs against housefly iGABARs. CONCLUSION This systematic study indicated that the presence of a carboxyl side chain shorter by one methylene than that of gabazine at the 1-position of the pyridazine ring is effective for maintaining the stable binding of these DIPs in insect iGABARs. Our study provides important information for the design of novel insect iGABAR CAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Congwei Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Zhisong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| |
Collapse
|
3
|
Wang C, Zhai N, Zhao Y, Wu F, Luo X, Ju X, Liu G, Liu H. Exploration of Novel Hepatitis B Virus Capsid Assembly Modulators by Integrated Molecular Simulations. ChemistrySelect 2021. [DOI: 10.1002/slct.202102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
- School of Materials Science and Engineering Zhengzhou University No.100 Science Avenue Zhengzhou 450001 Henan P. R. China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Hui Liu
- Department of Hematology Renmin Hospital of Wuhan University Wuhan 430060 Hubei P. R. China
| |
Collapse
|
4
|
Zhai N, Wang C, Wu F, Xiong L, Luo X, Ju X, Liu G. Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. Int J Mol Sci 2021; 22:8122. [PMID: 34360886 PMCID: PMC8348919 DOI: 10.3390/ijms22158122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Xanthine oxidase (XO) is an important target for the effective treatment of hyperuricemia-associated diseases. A series of novel 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (ODCs) as XO inhibitors (XOIs) with remarkable activities have been reported recently. To better understand the key pharmacological characteristics of these XOIs and explore more hit compounds, in the present study, the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) studies were performed on 46 ODCs. The constructed 3D-QSAR models exhibited reliable predictability with satisfactory validation parameters, including q2 = 0.897, R2 = 0.983, rpred2 = 0.948 in a CoMFA model, and q2 = 0.922, R2 = 0.990, rpred2 = 0.840 in a CoMSIA model. Docking and MD simulations further gave insights into the binding modes of these ODCs with the XO protein. The results indicated that key residues Glu802, Arg880, Asn768, Thr1010, Phe914, and Phe1009 could interact with ODCs by hydrogen bonds, π-π stackings, or hydrophobic interactions, which might be significant for the activity of these XOIs. Four potential hits were virtually screened out using the constructed pharmacophore model in combination with molecular dockings and ADME predictions. The four hits were also found to be relatively stable in the binding pocket by MD simulations. The results in this study might provide effective information for the design and development of novel XOIs.
Collapse
Affiliation(s)
- Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Liwei Xiong
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| |
Collapse
|
5
|
Crisan L, Bora A. Small Molecules of Natural Origin as Potential Anti-HIV Agents: A Computational Approach. Life (Basel) 2021; 11:722. [PMID: 34357094 PMCID: PMC8303883 DOI: 10.3390/life11070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1), one of the leading causes of infectious death globally, generates severe damages to people's immune systems and makes them susceptible to serious diseases. To date, there are no drugs that completely remove HIV from the body. This paper focuses on screening 224,205 natural compounds of ZINC15 NPs subset to identify those with bioactivity similar to non-nucleoside reverse transcriptase inhibitors (NNRTIs) as promising candidates to treat HIV-1. To reach the goal, an in silico approach involving 3D-similarity search, ADMETox, HIV protein-inhibitor prediction, docking, and MM-GBSA free-binding energies was trained. The FDA-approved HIV drugs, efavirenz, etravirine, rilpivirine, and doravirine, were used as queries. The prioritized compounds were subjected to ADMETox, docking, and MM-GBSA studies against HIV-1 reverse transcriptase (RT). Lys101, Tyr181, Tyr188, Trp229, and Tyr318 residues and free-binding energies have proved that ligands can stably bind to HIV-1 RT. Three natural products (ZINC37538901, ZINC38321654, and ZINC67912677) containing oxan and oxolan rings with hydroxyl substituents and one (ZINC2103242) having 3,6,7,8-tetrahydro-2H-pyrido[1,2-a]pyrazine-1,4-dione core exhibited comparable profiles to etravirine and doravirine, with ZINC2103242 being the most promising anti-HIV candidate in terms of drug metabolism and safety profile. These findings may open new avenues to guide the rational design of novel HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Luminita Crisan
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Avenue, 300223 Timisoara, Romania
| | - Alina Bora
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Avenue, 300223 Timisoara, Romania
| |
Collapse
|
6
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
7
|
Chen L, Liu WG, Xiong F, Ma C, Sun C, Zhu YR, Zhang XG, Wang ZH. 3D-QSAR, molecular docking and molecular dynamics simulations analyses of a series of heteroaryldihydropyrimidine derivatives as hepatitis B virus capsid assembly inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02542b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In silico design of heteroaryldihydropyrimidine-based selective HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wen-Guang Liu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chao Ma
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chen Sun
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yi-Ren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Xing-Guang Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhong-Hua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Kanwal A, Ullah S, Ahmad M, Pelletier J, Aslam S, Sultan S, Sévigny J, Iqbal M, Iqbal J. Synthesis and Nucleotide Pyrophosphatase/Phosphodiesterase Inhibition Studies of Carbohydrazides Based on Benzimidazole‐Benzothiazine Skeleton. ChemistrySelect 2020. [DOI: 10.1002/slct.202003479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afshan Kanwal
- Department of Chemistry Government College University Faisalabad 38000 Pakistan
| | - Saif Ullah
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Matloob Ahmad
- Department of Chemistry Government College University Faisalabad 38000 Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec- Université Laval Québec, QC G1 V 4G2 Canada
| | - Sana Aslam
- Department of Chemistry Government College Women University Faisalabad 38000 Pakistan
| | - Sadia Sultan
- Faculty of Pharmacy Universiti Teknologi MARA, Puncak Alam Campus 42300 Bandar Puncak Alam Selangor Darul Ehsan Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns) Universiti Teknologi MARA, Puncak Alam Campus 42300 Bandar Puncak Alam Selangor Darul Ehsan Malaysia
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec- Université Laval Québec, QC G1 V 4G2 Canada
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine Université Laval Québec, QC G1 V 0 A6 Canada
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Faisalabad 38000 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| |
Collapse
|
9
|
Gu SX, Zhu YY, Wang C, Wang HF, Liu GY, Cao S, Huang L. Recent discoveries in HIV-1 reverse transcriptase inhibitors. Curr Opin Pharmacol 2020; 54:166-172. [PMID: 33176248 DOI: 10.1016/j.coph.2020.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
HIV-1 reverse transcriptase inhibitors (RTIs) are indispensable components of highly active antiretroviral therapy (HAART), which has achieved great success in controlling AIDS epidemic in reducing drastically the morbidity and mortality of HIV-infected patients. RTIs are divided into two categories, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). In this review, the recent discoveries in NRTIs and NNRTIs, including approved anti-HIV drugs and noteworthy drug candidates in different development stages, are summarized, and their future direction is prospected.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Yuan-Yuan Zhu
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hai-Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
10
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry, the journal (volume 30, 2019, issues 1–2) and the discipline. Struct Chem 2020. [DOI: 10.1007/s11224-020-01494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Chen Y, Tian Y, Gao Y, Wu F, Luo X, Ju X, Liu G. In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines. Front Chem 2020; 8:164. [PMID: 32266208 PMCID: PMC7105726 DOI: 10.3389/fchem.2020.00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
A novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) analogs have recently been recognized as promising HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) with potent antiviral activity. To better understand the pharmacological essentiality of these DHPYs and design novel NNRTI leads, in this work, a systematic in silico study was performed on 52 DHPYs using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, virtual screening, absorption-distribution-metabolism-excretion (ADME) prediction, and molecular dynamics (MD) methods. The generated 3D-QSAR models exhibited satisfactory parameters of internal validation and well-externally predictive capacity, for instance, the q2, R2, andr pred 2 of the optimal comparative molecular similarity indices analysis model were 0.647, 0.970, and 0.751, respectively. The docking results indicated that residues Lys101, Tyr181, Tyr188, Trp229, and Phe227 played important roles for the DHPY binding. Nine lead compounds were obtained by the virtual screening based on the docking and pharmacophore model, and three new compounds with higher docking scores and better ADME properties were subsequently designed based on the screening and 3D-QSAR results. The MD simulation studies further demonstrated that the newly designed compounds could stably bind with the HIV-1 RT. These hit compounds were supposed to be novel potential anti-HIV-1 inhibitors, and these findings could provide significant information for designing and developing novel HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
12
|
In silico studies of novel scaffold of thiazolidin-4-one derivatives as anti-Toxoplasma gondii agents by 2D/3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2020. [DOI: 10.1007/s11224-019-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Chen Y, Gao Y, Wu F, Luo X, Ju X, Liu G. Computationally exploring novel xanthine oxidase inhibitors using docking-based 3D-QSAR, molecular dynamics, and virtual screening. NEW J CHEM 2020. [DOI: 10.1039/d0nj03221b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computationally exploring novel potential xanthine oxidase inhibitors using a systematic modeling study.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| |
Collapse
|
14
|
Sun CC, Feng LJ, Sun XH, Yu RL, Chu YY, Kang CM. Study on the interactions of pyrimidine derivatives with FAK by 3D-QSAR, molecular docking and molecular dynamics simulation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02136a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Focal adhesion kinase (FAK) is a kind of tyrosine kinase that modulates integrin and growth factor signaling pathways.
Collapse
Affiliation(s)
- Chuan-ce Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Li-jun Feng
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Xiao-hua Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Ri-lei Yu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Yan-yan Chu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Cong-min Kang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
15
|
Tian Y, Gao Y, Chen Y, Liu G, Ju X. Identification of The Fipronil Resistance Associated Mutations in Nilaparvata lugens GABA Receptors by Molecular Modeling. Molecules 2019; 24:E4116. [PMID: 31739499 PMCID: PMC6891292 DOI: 10.3390/molecules24224116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Fipronil, as the first commercialized member of phenylpyrazole insecticides, has been widely used to control planthoppers in China due to its high insecticidal activity and low toxicity to mammals. However, insects have developed resistance to phenylpyrazoles after their long-term use. The resistance mechanism of insects to fipronil has not been well identified, which limited the development of phenylpyrazole insecticides. In the present study, we aimed to elucidate the related fipronil-resistance mechanism in N. lugens GABA receptors by homology modeling, molecular docking, and molecular dynamics. The results indicated that fipronil showed the weakest interaction with the mutant (R0'Q + A2'S) GABA receptors, which is consistent with the experimental study. The binding poses of fipronil were found to be changed when mutations were conducted. These findings verified the novel fipronil-resistance mechanism in silico and provide important information for the design of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
| | | | | | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (Y.T.); (Y.G.); (Y.C.)
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (Y.T.); (Y.G.); (Y.C.)
| |
Collapse
|
16
|
Chavda J, Bhatt H. 3D-QSAR (CoMFA, CoMSIA, HQSAR and topomer CoMFA), MD simulations and molecular docking studies on purinylpyridine derivatives as B-Raf inhibitors for the treatment of melanoma cancer. Struct Chem 2019. [DOI: 10.1007/s11224-019-01334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Gao Y, Chen Y, Tian Y, Zhao Y, Wu F, Luo X, Ju X, Liu G. In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. NEW J CHEM 2019. [DOI: 10.1039/c9nj03353j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rational design and virtual screening of novel inhibitors of HIV reverse transcriptase associated ribonuclease H based on a combined molecular modeling study.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yilan Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|
18
|
Liu G, Li H, Shi J, Wang W, Furuta K, Liu D, Zhao C, Ozoe F, Ju X, Ozoe Y. 4-Aryl-5-carbamoyl-3-isoxazolols as competitive antagonists of insect GABA receptors: Synthesis, biological activity, and molecular docking studies. Bioorg Med Chem 2018; 27:416-424. [PMID: 30579800 DOI: 10.1016/j.bmc.2018.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022]
Abstract
Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 μM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 μg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Huaguang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaying Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Kenjiro Furuta
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Di Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
19
|
Wan Y, Tian Y, Wang W, Gu S, Ju X, Liu G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Adv 2018; 8:40529-40543. [PMID: 35557880 PMCID: PMC9091378 DOI: 10.1039/c8ra06475j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Abstract
A series of novel diarylpyridine derivatives has recently been identified as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), and most of them exhibited potent activities against HIV-1 strains, with EC50 values in the low nanomolar range. However, the three-dimensional quantitative structure–activity relationships (3D-QSARs) and pharmacophore characteristics of these compounds remain to be studied. In the present study, forty-two diarylpyridine derivatives were firstly docked into HIV-1 reverse transcriptase, and molecular dynamics (10 ns) simulations were further performed to validate the reliability of the docking results, which indicated that residues Lys101, Tyr181, Tyr188, Phe227, and Trp229 might play important roles in binding with these diarylpyridines. The “U”-shaped docking conformations of all compounds were then used to construct 3D-QSAR and pharmacophore models. The satisfactory statistical parameters of CoMFA (qloo2 = 0.665, rncv2 = 0.989, rpred2 = 0.962, etc.) and CoMSIA (qloo2 = 0.727, rncv2 = 0.988, rpred2 = 0.912, etc.) models demonstrated that both constructed models had excellent predictability, and their contour maps gave insights into the structural requirements of the diarylpyridines for the anti-HIV-1 activity. A docking-conformation-based pharmacophore model, containing three hydrophobic centers, three hydrogen-bond acceptors, and three hydrogen-bond donors, was also established. The observations in this study might provide important information for the rational design and development of novel HIV-1 NNRTIs. Computational modeling approaches were successfully applied to a series of diarylpyridine derivatives as novel HIV-1 NNRTIs.![]()
Collapse
Affiliation(s)
- Youlan Wan
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|