1
|
Liu Q, Feng N, Zou Y, Fan C, Wang J. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications. Sci Rep 2024; 14:6051. [PMID: 38480809 PMCID: PMC10937923 DOI: 10.1038/s41598-024-56380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Graphdiyne (GDY), a two-dimensional carbon material with sp- and sp2-hybridization, is recognized for its unique electronic properties and well-dispersed porosity. Its versatility has led to its use in a variety of applications. The precise control of this material's properties is paramount for its effective utilization in nano-optical devices. One effective method of regulation, which circumvents the need for additional disturbances, involves the application of external stress. This technique provides a direct means of eliciting changes in the electronic characteristics of the material. For instance, when subjected to uniaxial stress, electron transfer occurs at the triple bond. This results in an armchair-edged graphdiyne nanoribbon (A(3)-GDYNR) with a planar width of 2.07 nm, which exhibits a subtle plasmon effect at 500 nm. Conversely, a zigzag-edged graphdiyne nanoribbon (Z(3)-GDYNR) with a planar width of 2.86 nm demonstrates a pronounced plasmon effect within the 250-1200 nm range. This finding suggests that the zigzag nanoribbon surpasses the armchair nanoribbon in terms of its plasmon effect. First principles calculations and ab initio molecular dynamics further confirmed that under applied stress Z(3)-GDYNR exhibits less deformation than A(3)-GDYNR, indicating superior stability. This work provides the necessary theoretical basis for understanding graphene nanoribbons (GDYNRs).
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China
| | - Naixing Feng
- Key Laboratory of Intelligent Computing and Signal Processing, and School of Electronic and Information Engineering, Anhui University, Hefei, 230601, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Chuanqiang Fan
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
2
|
Liu Q, Wang X, Yu J, Wang J. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications. Phys Chem Chem Phys 2024; 26:1541-1563. [PMID: 38165768 DOI: 10.1039/d3cp04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphyne (GY) and graphdiyne (GDY) have properties including unique sp- and sp2-hybrid carbon atomic structures, natural non-zero band gaps, and highly conjugated π electrons. GY and GDY have good application prospects in many fields, including catalysis, solar cells, sensors, and modulators. Under the influence of the boundary effect and quantum size effect, quasi-one-dimensional graphyne nanoribbons (GYNRs) and graphdiyne nanoribbons (GDYNRs) show novel physical properties. The various structures available give GYNRs and GDYNRs greater band structure and electronic properties, and their excellent physical and chemical properties differ from those of two-dimensional GY and GDY. However, the development of GYNRs and GDYNRs still faces problems, including issues with accurate synthesis, advanced structural characterization, the structure-performance correlation of materials, and potential applications. In this review, the structures and physical properties of quasi-one-dimensional GYNRs and GDYNRs are reviewed, their advantages and disadvantages are summarized, and their potential applications are highlighted. This review provides a meaningful basis and research foundation for the design and development of high-performance materials and devices based on GYNRs and GDYNRs in the field of energy.
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Xiaorong Wang
- School of petrochemical engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jing Yu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| |
Collapse
|
3
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
4
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
5
|
Li X, Zheng Y, Wu W, Jin M, Zhou Q, Fu L, Zare N, Karimi F, Moghadam M. Graphdiyne applications in sensors: A bibliometric analysis and literature review. CHEMOSPHERE 2022; 307:135720. [PMID: 35843425 DOI: 10.1016/j.chemosphere.2022.135720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Graphdiyne is a two-dimensional carbon nanomaterial synthesized artificially in 2010. Its outstanding performance is considered to have great potential in different fields. This article summarizes the work of graphdiyne in the sensing field by literature summary and bibliometrics analysis. The development of graphdiyne in the field of sensing has gone through a process from theoretical calculation to experimental verification. Especially in the last three years, there has been very rapid development. The theoretical calculations suggest that graphdiyne is an excellent gas sensing material, but there is little experimental evidence in this direction. On the contrary, graphdiyne has been widely reported in the field of electrochemical sensing. At the same time, graphdiyne can also be used as a molecular switch for DNA sequencing. Fluorescent sensors based on graphdiyne have also been reported. In general, the potential of graphdiyne in sensing still needs to be explored. Current research results do not show that graphdiyne has irreplaceable advantages in sensing. The bibliometric analysis used in this review also provides cooperative network analysis and co-citation analysis on this topic. This provides a reference for the audience wishing to undertake research on the topic. In addition, according to the analysis, we also listed the direction that which this field deserves attention in the future.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
6
|
Interaction studies of benzene and phenol on novel 4–8 arsenene nanotubes – A DFT insight. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Dang X, Zhao H. Graphdiyne: A promising 2D all-carbon nanomaterial for sensing and biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Nagarajan V, Chandiramouli R. Molecular adsorption of o-ethyltoluene and phenyl propane on square-octagon phosphorene nanosheet – A first-principles calculation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115320] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
First-principles study for exploring the adsorption behavior of G-series nerve agents on graphdyine surface. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Jyothi M, Nagarajan V, Chandiramouli R. Benzyl alcohol and 2-methyldecalin vapor adsorption studies on β-bismuthene sheets – A DFT outlook. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Saravanan S, Nagarajan V, Chandiramouli R. Alcohol molecular interaction studies on stair phosphorene nanosheets: a first-principles approach. Struct Chem 2020. [DOI: 10.1007/s11224-020-01615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Molecular interaction studies of cumene and toluene on δ-arsenene nanosheet – a first-principles outlook. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1800853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- R. Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
13
|
Bhuvaneswari R, Nagarajan V, Chandiramouli R. DFT Outlook on Surface Adsorption Properties of Nitrobenzene on Novel Red Tricycle Arsenene Nanoring. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01633-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Princy Maria J, Nagarajan V, Chandiramouli R. Surface assimilation studies of ethyl methyl sulfide on gamma phosphorene sheets – a DFT outlook. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1774089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Princy Maria
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
15
|
|
16
|
Sabitha R, Nagarajan V, Chandiramouli R. Computational Studies on the Interaction of Formaldehyde Vapor with δ‐Phosphorene Nanosheet: A DFT Insight. ChemistrySelect 2020. [DOI: 10.1002/slct.201904812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ramasamy Sabitha
- School of Electrical & Electronics EngineeringSASTRA Deemed University, Tirumalaisamudram Thanjavur 613 401 India
| | - Veerappan Nagarajan
- School of Electrical & Electronics EngineeringSASTRA Deemed University, Tirumalaisamudram Thanjavur 613 401 India
| | - Ramanathan Chandiramouli
- School of Electrical & Electronics EngineeringSASTRA Deemed University, Tirumalaisamudram Thanjavur 613 401 India
| |
Collapse
|