1
|
Kızılcan DŞ, Güzel Y, Türkmenoğlu B. Clustering of atoms relative to vector space in the Z-matrix coordinate system and 'graphical fingerprint' analysis of 3D pharmacophore structure. Mol Divers 2024; 28:4087-4104. [PMID: 38280974 PMCID: PMC11659349 DOI: 10.1007/s11030-023-10798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
The behavior of a molecule within its environment is governed by chemical fields present in 3D space. However, beyond local descriptors in 3D, the conformations a molecule assumes, and the resulting clusters also play a role in influencing structure-activity models. This study focuses on the clustering of atoms according to the vector space of four atoms aligned in the Z-Matrix Reference system for molecular similarity. Using 3D-QSAR analysis, it was aimed to determine the pharmacophore groups as interaction points in the binding region of the β2-adrenoceptor target of fenoterol stereoisomers. Different types of local reactive descriptors of ligands have been used to elucidate points of interaction with the target. Activity values for ligand-receptor interaction energy were determined using the Levenberg-Marquardt algorithm. Using the Molecular Comparative Electron Topology method, the 3D pharmacophore model (3D-PhaM) was obtained after aligning and superimposing the molecules and was further validated by the molecular docking method. Best guesses were calculated with a non-output validation (LOO-CV) method. Finally, the data were calculated using the 'graphic fingerprint' technique. Based on the eLKlopman (Electrostatic LUMO Klopman) descriptor, the Q2 value of this derivative set was calculated as 0.981 and the R2ext value is calculated as 0.998.
Collapse
Affiliation(s)
- Dilek Şeyma Kızılcan
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Yahya Güzel
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| |
Collapse
|
2
|
Çöl ÖF, Bozbey İ, Türkmenoğlu B, Uysal M. 3(2H)-pyridazinone derivatives: Synthesis, in-silico studies, structure-activity relationship and in-vitro evaluation for acetylcholinesterase enzyme inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Comparison of the performance of different “local reactive descriptors” in 3D-QSAR analysis of enantioselective molecules. Struct Chem 2021. [DOI: 10.1007/s11224-021-01859-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Alhadrami HA, Sayed AM, Melebari SA, Khogeer AA, Abdulaal WH, Al-Fageeh MB, Algahtani M, Rateb ME. Targeting allosteric sites of human aromatase: a comprehensive in-silico and in-vitro workflow to find potential plant-based anti-breast cancer therapeutics. J Enzyme Inhib Med Chem 2021; 36:1334-1345. [PMID: 34139914 PMCID: PMC8759730 DOI: 10.1080/14756366.2021.1937145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme’s substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme’s haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Molecular Diagnostic Unit, The Regional Laboratory in Makkah, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Sami A Melebari
- Molecular Diagnostic Unit, The Regional Laboratory in Makkah, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Asem A Khogeer
- Plan and Research Department, General Directorate of Health Affairs, Makkah region, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed B Al-Fageeh
- General Directorate for Funds and Grants (GDFG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory and Blood Bank, Security Forces Hospital Program, Mecca, Saudi Arabia
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
5
|
Nkambeu B, Ben Salem J, Beaudry F. Eugenol and Other Vanilloids Hamper Caenorhabditis elegans Response to Noxious Heat. Neurochem Res 2020; 46:252-264. [PMID: 33123873 DOI: 10.1007/s11064-020-03159-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Eugenol, a known vanilloid, was frequently used in dentistry as a local analgesic in addition, antibacterial and neuroprotective effects were also reported. Eugenol, capsaicin and many vanilloids are interacting with the transient receptor potential vanilloid 1 (TRPV1) in mammals and the TRPV1 is activated by noxious heat. The pharmacological manipulation of the TRPV1 has been shown to have therapeutic value. Caenorhabditis elegans (C. elegans) express TRPV orthologs (e.g. OCR-2, OSM-9) and it is a commonly used animal model system to study nociception as it displays a well-defined and reproducible nocifensive behavior. After exposure to vanilloid solutions, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The results showed that eugenol, vanillin and zingerone can hamper nocifensive response of C. elegans to noxious heat (32-35 °C) following a sustained exposition. Also, the effect was reversed 6 h post exposition. Furthermore, eugenol and vanillin did not target specifically the OCR-2 or OSM-9 but zingerone did specifically target the OCR-2 similarly to capsaicin. Further structural and physicochemical analyses were performed. Key parameters for quantitative structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR) and frontier orbital analyses suggest similarities and dissimilarities amongst the tested vanilloids and capsaicin in accordance with the relative anti-nociceptive effects observed.
Collapse
Affiliation(s)
- Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Jennifer Ben Salem
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada.,Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, Toulouse, France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|