1
|
Ren H, Huang Y, Yang W, Ling Z, Liu S, Zheng S, Li S, Wang Y, Pan L, Fan W, Zheng Y. Emerging nanocellulose from agricultural waste: Recent advances in preparation and applications in biobased food packaging. Int J Biol Macromol 2024; 277:134512. [PMID: 39111480 DOI: 10.1016/j.ijbiomac.2024.134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/11/2024]
Abstract
With the increasing emphasis on sustainability and eco-friendliness, a novel biodegradable packaging materials has received unprecedented attention. Nanocellulose, owing to its high crystallinity, degradability, minimal toxicity, and outstanding biocompatibility, has gained considerable interest in the field of sustainable packaging. This review provided a comprehensive perspective about the recent advances and future development of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). We first introduced the utilization of agricultural waste for nanocellulose production, such as straw, bagasse, fruit byproducts, and shells. Next, we discussed the preparation process of nanocellulose from various agricultural wastes and expounded the advantages and shortcomings of different methods. Subsequently, this review offered an in-depth investigation on the application of nanocellulose in food packaging, especially the function and packaged form of nanocellulose on food preservation. Finally, the safety evaluation of nanocellulose in food packaging is conducted to enlighten and promote the perfection of relevant regulatory documents. In short, this review provided valuable insights for potential research on the biobased materials utilized in future food packaging.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yu Huang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Weixia Yang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sifan Liu
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Shiyu Zheng
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Siqi Li
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yu Wang
- China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Lichao Pan
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, United States
| |
Collapse
|
2
|
Singh M, Kaneko T. Ultra-tough artificial woods of polyphenol-derived biodegradable Co-polymer with Poly(butylene succinate). Heliyon 2023; 9:e16567. [PMID: 37303518 PMCID: PMC10248044 DOI: 10.1016/j.heliyon.2023.e16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Large productions of plastics worldwide are greater concern to the environment because of their non degradability and thus, damaging the ecosystem. Recent advancements in biobased plastics are growing exponentially because of their promise of a sustainable environment. Biobased polycoumarates plastics have a wood-like appearance with liquid crystalline grains, light brown color, and cinnamon-like aroma, but have very low toughness. The polycoumarates were hybridized via main-chain transesterification with poly (butylene succinate) (PBS). PBS itself being a biobased material has added more value to the final product due to biodegradability. The mechanical flexibility and toughness of the bio-based copolymers were controlled by varying the PBS content. As a result, well-processable and in-soil degradable artificial woods with a high strain energy density of approximately 76 MJ/m3 were developed while maintaining the wood-like appearance.
Collapse
|
3
|
Barbash VA, Yashchenko OV, Gondovska AS, Deykun IM. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|