1
|
Ceznerová E, Kaufmanová J, Stikarová J, Pastva O, Loužil J, Chrastinová L, Suttnar J, Kotlín R, Dyr JE. Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G>A with oxidative posttranslational modifications. Blood Coagul Fibrinolysis 2022; 33:228-237. [PMID: 35067535 DOI: 10.1097/mbc.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.
Collapse
Affiliation(s)
- Eliška Ceznerová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jiřina Kaufmanová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jana Stikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Ondřej Pastva
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Loužil
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Leona Chrastinová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jiři Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Roman Kotlín
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| |
Collapse
|
2
|
Ceznerová E, Kaufmanová J, Sovová Ž, Štikarová J, Loužil J, Kotlín R, Suttnar J. Structural and Functional Characterization of Four Novel Fibrinogen Mutations in FGB Causing Congenital Fibrinogen Disorder. Int J Mol Sci 2022; 23:ijms23020721. [PMID: 35054908 PMCID: PMC8775743 DOI: 10.3390/ijms23020721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital fibrinogen disorders are caused by mutations in genes coding for fibrinogen and may lead to various clinical phenotypes. Here, we present a functional and structural analysis of 4 novel variants located in the FGB gene coding for fibrinogen Bβ chain-heterozygous missense BβY416C and BβA68S, homozygous nonsense BβY345*, and heterozygous nonsense BβW403* mutations. The cases were identified by coagulation screening tests and further investigated by various methods. Fibrin polymerization had abnormal development with decreased maximal absorbance in all patients. Plasmin-induced fibrin degradation revealed different lytic phases of BβY416C and BβW403* than those of the control. Fibrinopeptide cleavage measured by reverse phase high pressure liquid chromatography of BβA68S showed impaired release of fibrinopeptide B. Morphological properties, studied through scanning electron microscopy, differed significantly in the fiber thickness of BβY416C, BβA68S, and BβW403*, and in the fiber density of BβY416C and BβW403*. Finally, homology modeling of BβA68S showed that mutation caused negligible alternations in the protein structure. In conclusion, all mutations altered the correct fibrinogen function or structure that led to congenital fibrinogen disorders.
Collapse
Affiliation(s)
- Eliška Ceznerová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Jiřina Kaufmanová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Žofie Sovová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
| | - Jan Loužil
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
| | - Roman Kotlín
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
- Correspondence: ; Tel.: +420-221-977-612
| | - Jiří Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12800 Prague, Czech Republic; (E.C.); (Ž.S.); (J.Š.); (J.L.); (J.S.)
| |
Collapse
|
3
|
Wei A, Liao L, Xiang L, Yan J, Yang W, Nai G, Luo M, Deng D, Lin F. Congenital dysfibrinogenaemia assessed by whole blood thromboelastography. Int J Lab Hematol 2018; 40:459-465. [PMID: 29708302 DOI: 10.1111/ijlh.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- A. Wei
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - L. Liao
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - L. Xiang
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - J. Yan
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - W. Yang
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
- Department of Clinical Laboratory; Yi Yang Central Hospital; Yiyang Hunan China
| | - G. Nai
- Department of Hematology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - M. Luo
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - D. Deng
- Department of Hematology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - F. Lin
- Department of Clinical Laboratory; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| |
Collapse
|
4
|
Riedelová-Reicheltová Z, Kotlín R, Suttnar J, Geierová V, Riedel T, Májek P, Dyr JE. A novel natural mutation AαPhe98Ile in the fibrinogen coiled-coil affects fibrinogen function. Thromb Haemost 2017; 111:79-87. [DOI: 10.1160/th13-04-0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/05/2013] [Indexed: 11/05/2022]
Abstract
SummaryThe aim of this study was to investigate the structure and function of fibrinogen obtained from a patient with normal coagulation times and idiopathic thrombophilia. This was done by SDS-PAGE and DNA sequence analyses, scanning electron microscopy, fibrinopeptide release, fibrin polymerisation initiated by thrombin and reptilase, fibrinolysis, and platelet aggregometry. A novel heterozygous point mutation in the fibrinogen Aα chain, Phe98 to Ile, was found and designated as fibrinogen Vizovice. The mutation, which is located in the RGDF sequence (Aα 95–98) of the fibrinogen coiled-coil region, significantly affected fibrin clot morphology. Namely, the clot formed by fibrinogen Vizovice contained thinner and curled fibrin fibers with reduced length. Lysis of the clots prepared from Vizovice plasma and isolated fibrinogen were found to be impaired. The lysis rate of Vizovice clots was almost four times slower than the lysis rate of control clots. In the presence of platelets agonists the mutant fibrinogen caused increased platelet aggregation. The data obtained show that natural mutation of Phe98 to Ile in the fibrinogen Aα chain influences lateral aggregation of fibrin protofibrils, fibrinolysis, and platelet aggregation. They also suggest that delayed fibrinolysis, together with the abnormal fibrin network morphology and increased platelet aggregation, may be the direct cause of thrombotic complications in the patient associated with pregnancy loss.
Collapse
|
5
|
Luo ML, Yan J, Lin FQ, Cheng P, Deng DH. [Surgical treatment of two patients with asymptomatic hereditary abnormal fibrinogen]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:797-798. [PMID: 29081199 PMCID: PMC7348365 DOI: 10.3760/cma.j.issn.0253-2727.2017.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/11/2022]
|
6
|
Riedelová-Reicheltová Z, Brynda E, Riedel T. Fibrin nanostructures for biomedical applications. Physiol Res 2017; 65:S263-S272. [PMID: 27762592 DOI: 10.33549/physiolres.933428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibrin is a versatile biopolymer that has been extensively used in tissue engineering. In this paper fibrin nanostructures prepared using a technique based on the catalytic effect of fibrin-bound thrombin are presented. This technique enables surface-attached thin fibrin networks to form with precisely regulated morphology without the development of fibrin gel in bulk solution. Moreover, the influence of changing the polymerization time, along with the antithrombin III and heparin concentrations on the morphology of fibrin nanostructures was explored. The binding of bioactive molecules (fibronectin, laminin, collagen, VEGF, bFGF, and heparin) to fibrin nanostructures was confirmed. These nanostructures can be used for the surface modification of artificial biomaterials designed for different biomedical applications (e.g. artificial vessels, stents, heart valves, bone and cartilage constructs, skin grafts, etc.) in order to promote the therapeutic outcome.
Collapse
Affiliation(s)
- Z Riedelová-Reicheltová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
7
|
Korte W, Poon MC, Iorio A, Makris M. Thrombosis in Inherited Fibrinogen Disorders. Transfus Med Hemother 2017; 44:70-76. [PMID: 28503122 DOI: 10.1159/000452864] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Although inherited fibrinogen disorders (IFD) are primarily considered to be bleeding disorders, they are associated with a higher thrombotic complication risk than defects in other clotting factors. Managing IFD patients with thrombosis is challenging as anticoagulant treatment may exacerbate the underlying bleeding risk which can be life-threatening. Due to the low prevalence of IFD, there is little information on pathophysiology or optimal treatment of thrombosis in these patients. We searched the literature for cases of thrombosis among IFD patients and identified a total of 128 patient reports. In approximately half of the cases, thromboses were spontaneous, while in the others trauma, surgery, and parturition contributed to the risk. The true mechanism(s) of thrombosis in IFD patients remain to be elucidated. A variety of anticoagulant treatments have been used in the treatment or prevention of thrombosis, sometimes with concurrent fibrinogen replacement therapy. There is no definite evidence that fibrinogen supplementation increases the risk of thrombosis, and it may potentially be effective in the treatment and prevention of both thrombosis and hemorrhage in IFD patients.
Collapse
Affiliation(s)
- Wolfgang Korte
- Center for Laboratory Medicine; and Hemostasis and Hemophilia Center St. Gallen, Switzerland
| | - Man-Chiu Poon
- Department of Medicine, Pediatrics and Oncology, University of Calgary, Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Hospital, Calgary, AB, Canada
| | - Alfonso Iorio
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael Makris
- Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Luo M, Deng D, Xiang L, Cheng P, Liao L, Deng X, Yan J, Lin F. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His. Medicine (Baltimore) 2016; 95:e4864. [PMID: 27684817 PMCID: PMC5265910 DOI: 10.1097/md.0000000000004864] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees.Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS-PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM).The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS-PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal.Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen.
Collapse
Affiliation(s)
| | - Donghong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lin Liao
- Department of Clinical Laboratory
| | | | - Jie Yan
- Department of Clinical Laboratory
| | - Faquan Lin
- Department of Clinical Laboratory
- Correspondence: Faquan Lin, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China (e-mail: )
| |
Collapse
|
9
|
|
10
|
Casini A, de Moerloose P. Can the phenotype of inherited fibrinogen disorders be predicted? Haemophilia 2016; 22:667-75. [PMID: 27293018 DOI: 10.1111/hae.12967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Congenital fibrinogen disorders are rare diseases affecting either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenaemia) or both (hypodysfibrinogenaemia) of fibrinogen. In addition to bleeding, unexpected thrombosis, spontaneous spleen ruptures, painful bone cysts and intrahepatic inclusions can complicate the clinical course of patients with quantitative fibrinogen disorders. Clinical manifestations of dysfibrinogenaemia include absence of symptoms, major bleeding or thrombosis as well as systemic amyloidosis. Although the diagnosis of any type of congenital fibrinogen disorders is usually not too difficult with the help of conventional laboratory tests completed by genetic studies, the correlation between all available tests and the clinical manifestations is more problematic in many cases. Improving accuracy of diagnosis, performing genotype, analysing function of fibrinogen variants and carefully investigating the personal and familial histories may lead to a better assessment of patients' phenotype and therefore help in identifying patients at increased risk of adverse clinical outcomes. This review provides an update of various tests (conventional and global assays, molecular testing, fibrin clot analysis) and clinical features, which may help to better predict the phenotype of the different types of congenital fibrinogen disorders.
Collapse
Affiliation(s)
- A Casini
- Division of Angiology and Haemostasis, University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - P de Moerloose
- Division of Angiology and Haemostasis, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
11
|
Two novel mutations in the fibrinogen γ nodule. Thromb Res 2014; 134:901-8. [PMID: 25074738 DOI: 10.1016/j.thromres.2014.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Congenital dysfibrinogenemia and hypofibrinogenemia are rare diseases characterized by inherited abnormality in the fibrinogen molecule, resulting in functional defects (dysfibrinogenemia) or low fibrinogen plasma levels (hypofibrinogenemia). MATERIALS AND METHODS We have described two abnormal fibrinogens - fibrinogen Hranice (γ Phe204Val) and Praha IV (γ Ser313Gly). The carrier of the Hranice mutation was a 40-year-old female with low fibrinogen levels. The carrier of the Praha IV mutation was a 42-year-old man with a history of idiopathic thrombosis, low functional fibrinogen levels, and a prolonged thrombin time. RESULTS Fibrin polymerization kinetics measurement was normal in both cases (after the addition of either thrombin or reptilase), as well as was fibrinolysis. Scanning electron microscopy and confocal microscopy revealed significantly wider fibers in both cases, when compared with fibers prepared from healthy control samples. Although both cases are situated in the γ-nodule, they manifested differently. While the γ Ser313Gly mutation manifested as dysfibrinogenemia with a thrombotic background, the γ Phe204Val mutation manifested as hypofibrinogenemia without clinical symptoms. The mutation sites of both fibrinogens are in highly conserved regions of the fibrinogen γ chains. γ Ser313 is situated in a class 16:18 β hairpin and is involved in hydrogen bonding with γ Asp320. γ Phe204 is situated in an inverse γ turn and may be involved in π-π interactions. CONCLUSIONS Both mutations cause conformational changes in fibrinogen, which lead either to impaired fibrinogen assembly (fibrinogen Hranice) or abnormal fibrinogen function (fibrinogen Praha IV).
Collapse
|
12
|
Casini A, Lukowski S, Quintard VL, Crutu A, Zak M, Regazzoni S, de Moerloose P, Neerman-Arbez M. FGB mutations leading to congenital quantitative fibrinogen deficiencies: an update and report of four novel mutations. Thromb Res 2014; 133:868-74. [PMID: 24560896 DOI: 10.1016/j.thromres.2014.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Causative mutations leading to congenital quantitative fibrinogen are frequently clustered in FGA encoding the fibrinogen Aα-chain. Mutations of FGB encoding the Bβ-chain are less common and of interest since the Bβ-chain is considered the rate-limiting factor in the hepatic production of the fibrinogen hexamer. METHOD Four novel FGB mutations were identified in two afibrinogenemic (one new-born and one 30 years old male) and hypofibrinogenemic (a 49 years old female) patient, with heterogeneous thrombotic and bleeding phenotype. The human fibrinogen beta chain precursor protein sequence (P02675) was obtained from the UniProt database. The resulting models were analysed in SwissPdbViewer 4.1 and POV-Ray 3.7. RESULTS The FGB c.895T>C p.Y299H (numbering from the initiator Met) and the FGB c.1415G>T p.G472V were predicted to be deleterious by SIFT analysis. The first replaces an uncharged aromatic amino acid side chain by a positively charged side chain modifying the balance in the distribution of hydrophobic and hydrophilic of the 10 Å neighbourhood residues. The second replaces one non-charged aliphatic side chain by another without any changes for the 10 Å surrounding region. The FGB c.352C>T p.Q118X leads to a severe premature termination codon and the FGB intron 4: IVS4-1G>C (c719-1G>C) leads to skipping of exon 5 or usage of a cryptic acceptor site located upstream or downstream of the normal site. CONCLUSIONS The continuous characterization of novel molecular defects responsible for fibrinogen deficiency combined with modelling of mutant proteins will continue to provide a better comprehension of the complexity of fibrinogen synthesis and physiology.
Collapse
Affiliation(s)
- A Casini
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Switzerland
| | - S Lukowski
- Department of Genetic Medicine and Development, University Medical School of Geneva, Switzerland
| | - V Louvain Quintard
- Haemostasis Laboratory, Surgical Center Marie Lannelongue, Le Plessis Robinson, France
| | - A Crutu
- Haemostasis Laboratory, Surgical Center Marie Lannelongue, Le Plessis Robinson, France
| | - M Zak
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - S Regazzoni
- Division of Haematology, Regional Hospital of Lugano, Lugano, Switzerland
| | - P de Moerloose
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Switzerland.
| | - M Neerman-Arbez
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Switzerland; Department of Genetic Medicine and Development, University Medical School of Geneva, Switzerland
| |
Collapse
|
13
|
Kotlín R, Zichová K, Suttnar J, Reicheltová Z, Salaj P, Hrachovinová I, Dyr JE. Congenital dysfibrinogenemia Aα Gly13Glu associated with bleeding during pregnancy. Thromb Res 2011; 127:277-8. [DOI: 10.1016/j.thromres.2010.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 12/14/2022]
|